Ассоциативный кэш. Экспериментальное определение характеристик кэш-памяти. Размер строки и тега кэш-памяти

В ассоциативной памяти элементы выбираются не по адресу, а по содержимому. Поясним последнее понятие более подробно. Для памяти с адресной организацией было введено понятие минимальной адресуемой единицы (МАЕ) как порции данных, имеющей индивидуальный адрес. Введем аналогичное понятие для ассоциативной памяти , и будем эту минимальную единицу хранения в ассоциативной памяти называть строкой ассоциативной памяти (СтрАП). Каждая СтрАП содержит два поля: поле тега (англ. tag - ярлык, этикетка, признак) и поле данных. Запрос на чтение к ассоциативной памяти словами можно выразить следующим образом: выбрать строку (строки), у которой (у которых) тег равен заданному значению.

Особо отметим, что при таком запросе возможен один из трех результатов:

  1. имеется в точности одна строка с заданным тегом;
  2. имеется несколько строк с заданным тегом;
  3. нет ни одной строки с заданным тегом.

Поиск записи по признаку - это действие, типичное для обращений к базам данных, и поиск в базе зачастую чвляется ассоциативным поиском. Для выполнения такого поиска следует просмотреть все записи и сравнить заданный тег с тегом каждой записи. Это можно сделать и при использовании для хранения записей обычной адресуемой памяти (и понятно, что это потребует достаточно много времени - пропорционально количеству хранимых записей!). Об ассоциативной памяти говорят тогда, когда ассоциативная выборка данных из памяти поддержана аппаратно. При записи в ассоциативную память элемент данных помещается в СтрАП вместе с присущим этому элементу тегом. Для этого можно использовать любую свободную СтрАП. Рассмотрим разновидности структурной организации КЭШ-памяти или способы отображения оперативной памяти на КЭШ .

Полностью ассоциативный КЭШ

Схема полностью ассоциативного КЭШа представлена на рисунке (см. рисунок ниже).

Опишем алгоритм работы системы с КЭШ-памятью. В начале работы КЭШ-память пуста. При выполнении первой же команды во время выборки ее код, а также еще несколько соседних байтов программного кода, - будут перенесены (медленно) в одну из строк КЭШа, и одновременно старшая часть адреса будет записана в соответствующий тег. Так происходит заполнение КЭШ-строки.

Если следующие выборки возможны из этого участка, они будут сделаны уже из КЭШа (быстро) - "КЭШ-попадание". Если же окажется, что нужного элемента в КЭШе нет, - "КЭШ-промахом". В этом случае обращение происходит к ОЗУ (медленно), и при этом одновременно заполняется очередная КЭШ-строка.

Схема полностью ассоциативной КЭШ-памяти

Обращение к КЭШу происходит следующим образом. После формирования исполнительного адреса его старшие биты, образующие тег, аппаратно (быстро) и одновременно сравниваются с тегами всех КЭШ-строк. При этом возможны только две ситуации из трех, перечисленных ранее: либо все сравнения дадут отрицательный результат (КЭШ-промах), либо положительный результат сравнения будет зафиксирован в точности для одной строки (КЭШ-попадание).

При считывании, если зафиксировано КЭШ-попадание, младшие разряды адреса определяют позицию в КЭШ-строке, начиная с которой следует выбирать байты, а тип операции определяет количество байтов. Очевидно, что если длина элемента данных превышает один байт, то возможны ситуации, когда этот элемент (частями) расположен в двух (или более) разных КЭШ-строках, тогда время на выборку такого элемента увеличится. Противодействовать этому можно, выравнивая операнды и команды по границам КЭШ-строк, что и учитывают при разработке оптимизирующих трансляторов или при ручной оптимизации кода.

Если произошел КЭШ-промах, а в КЭШе нет свободных строк, необходимо заменить одну строку КЭШа на другую строку.

Основная цель стратегии замещения - удерживать в КЭШ-памяти строки, к которым наиболее вероятны обращения в ближайшем будущем, и заменять строки, доступ к которым произойдет в более отдаленном времени или вообще не случится. Очевидно, что оптимальным будет алгоритм, который замещает ту строку, обращение к которой в будущем произойдет позже, чем к любой другой строке-КЭШ.

К сожалению, такое предсказание практически нереализуемо, и приходится привлекать алгоритмы, уступающие оптимальному. Вне зависимости от используемого алгоритма замещения, для достижения высокой скорости он должен быть реализован аппаратными средствами.

Среди множества возможных алгоритмов замещения наиболее распространенными являются четыре, рассматриваемые в порядке уменьшения их относительной эффективности. Любой из них может быть применен в полностью ассоциативном КЭШ.

Наиболее эффективным является алгоритм замещения на основе наиболее давнего использования (LRU - Least Recently Used ), при котором замещается та строка КЭШ-памяти, к которой дольше всего не было обращения. Проводившиеся исследования показали, что алгоритм LRU, который "смотрит" назад, работает достаточно хорошо в сравнении с оптимальным алгоритмом, "смотрящим" вперед.

Наиболее известны два способа аппаратурной реализации этого алгоритма. В первом из них с каждой строкой КЭШ-памяти ассоциируют счетчик. К содержимому всех счетчиков через определенные интервалы времени добавляется единица. При обращении к строке ее счетчик обнуляется. Таким образом, наибольшее число будет в счетчике той строки, к которой дольше всего не было обращений и эта строка - первый кандидат на замещение.

Второй способ реализуется с помощью очереди, куда в порядке заполнения строк КЭШ-памяти заносятся ссылки на эти строки. При каждом обращении к строке ссылка на нее перемещается в конец очереди. В итоге первой в очереди каждый раз оказывается ссылка на строку, к которой дольше всего не было обращений. Именно эта строка прежде всего и заменяется.

Другой возможный алгоритм замещения - алгоритм, работающий по принципу "первый вошел, первый вышел" (FIFO - First In First Out ). Здесь заменяется строка, дольше всего находившаяся в КЭШ-памяти. Алгоритм легко реализуется с помощью рассмотренной ранее очереди, с той лишь разницей, что после обращения к строке положение соответствующей ссылки в очереди не меняется.

Еще один алгоритм - замена наименее часто использовавшейся строки (LFU - Least Frequently Used). Заменяется та строка в КЭШ-памяти, к которой было меньше всего обращений. Принцип можно воплотить на практике, связав каждую строку со счетчиком обращений, к содержимому которого после каждого обращения добавляется единица. Главным претендентом на замещение является строка, счетчик которой содержит наименьшее число.

Простейший алгоритм - произвольный выбор строки для замены. Замещаемая строка выбирается случайным образом. Реализовано это может быть, например, с помощью счетчика, содержимое которого увеличивается на единицу с каждым тактовым импульсом, вне зависимости от того, имело место попадание или промах. Значение в счетчике определяет заменяемую строку.

Кроме тега и байтов данных в КЭШ-строке могут содержаться дополнительные служебные поля, среди которых в первую очередь следует отметить бит достоверности V (от valid - действительный имеющий силу) и бит модификации M (от modify - изменять, модифицировать). При заполнении очередной КЭШ-строки V устанавливается в состояние "достоверно", а M - в состояние "не модифицировано". В случае, если в ходе выполнения программы содержимое данной строки было изменено, переключается бит M, сигнализируя о том, что при замене данной строки ее содержимое следует переписать в ОЗУ. Если по каким-либо причинам произошло изменение копии элемента данной строки, хранимого в другом месте (например в ОЗУ), переключается бит V. При обращении к такой строке будет зафиксирован КЭШ-промах (несмотря на то, что тег совпадает), и обращение произойдет к основному ОЗУ. Кроме того, служебное поле может содержать биты, поддерживающие алгоритм LRU.

Оценка объема оборудования

Типовой объем КЭШ-памяти в современной системе - 8…1024 кбайт, а длина КЭШ-строки 4…32 байт. Дальнейшая оценка делается для значений объема КЭШа 256 кбайт и длины строки 32 байт, что характерно для систем с процессорами Pentium и PentiumPro. Длина тега при этом равна 27 бит, а количество строк в КЭШе составит 256К/ 32=8192. Именно столько цифровых компараторов 27 битных кодов потребуется для реализации вышеописанной структуры.

Приблизительная оценка затрат оборудования для построения цифрового компаратора дает значение 10 транз/бит, а общее количество транзисторов только в блоке компараторов будет равно:

10*27*8192 = 2 211 840,

что приблизительно в полтора раза меньше общего количества транзисторов на кристалле Pentium. Таким образом, ясно, что описанная структура полностью ассоциативной КЭШ-памяти () реализуема только при малом количестве строк в КЭШе, т.е. при малом объеме КЭШа (практически не более 32…64 строк). КЭШ большего объема строят по другой структуре.

Архитектура кэш-памяти.

В зависимости от способа определения взаимного соответствия строки кэша и обла-сти основной памяти различают три архитектуры кэш-памяти: кэш с прямым отобра-жением, полностью ассоциативный кэш-память, частично- или наборно-ассоциативная кэш-память.

Кэш-память с прямым отображением.

В кэш-памяти прямого отображения адрес памяти, по которому происходит обра-щение, однозначно определяет строку кэша, в которой может находиться требуе-мый блок. Принцип работы такого кэша поясним на примере несекторированного кэша объемом 256 Кбайт с размером строки 32 байта и объемом кэшируемой основной памяти 64 Мбайт - типичный кэш системной платы для Pentium. Структуру кэш-памяти в такой системе иллюстрирует рис. 1. Кэшируемая основная память условно разбивается на страницы (в данном случае по 256 Кбайт), размер которых совпадает с размером кэш-памяти (256 Кбайт). Кэш--память (и, условно - страницы основной памяти) делится на строки (256 Кбайт/ 32 байт - 8 К строк). Архитектура прямого отображения подразумевает, что каж-дая строка кэша может отображать из любой страницы кэшируемой памяти толь-ко соответствующую ей строку. Поскольку объем основной памяти много больше объема кэша, на каждую строку кэша может претендовать множество блоков памяти с одинаковой младшей частью адреса, которую называют смещением внутри страницы (0 - множество, 1-множество, 2-ьножество … N-множество 32-х байтных блоков). Одна строка в определен-ный момент может содержать копию только одного из этих блоков. Номер строки является адресом строки в кэш-памяти, а тег несет ин-формацию о том, какой именно блок занимает данную строку (тег это старшая часть адреса, выставленного процессором при обращении в память или, иначе говоря, номер страницы). Память тегов должна иметь количество ячеек, равное количеству строк кэша, а ее разрядность должна быть достаточной, чтобы вместить старшие биты адреса кэшируемой памяти, не попавшие на шину адреса кэш-памяти. Кроме адресной части тега, с каждой строкой кэша связаны биты признаков действительности и модифицированности данных. В начале каждого обращения к оперативной памяти контроллер кэш-памяти, первым делом, счи-тывает ячейку памяти тэгов с адресом строки, определяемым разрядами А17-А5, сравнивает содержимое этой строки памяти тэгов с разрядами А25-А18 адреса памяти, выставленного процессором, и анализирует признак действительности.

Рис. 1. Кэш с прямым отображением.

Этот анализ выполняется в специальном цикле слежения, который иногда называют циклом запроса. Если в результате анализа выясняется, что требуемого блока нет в кэше, генерируется (или продолжается) цикл обращения к основной памяти (кэш-промах). В случае попадания запрос обслуживается кэш--памятью. В случае промаха после считывания из основной памяти приемником ин-формации новые данные помещаются в строку кэша (если она чистая), а в ее тег помещаются старшие биты адреса и устанавливается признак действительности данных. Независимо от объема затребованных данных в кэш из основной памя-ти строка переписывается вся целиком (поскольку признак действительности относится ко всем ее байтам). Если контроллер кэша реализует упреждающее считывание, то в последующие свободные циклы шины обновляется также следующая строка (если она была чистой). Чтение «про запас» позволяет при необходимости осуществлять пакетный цикл чтения из кэша через границу строки. Такой кэш имеет самую простую аппаратную реализацию и применяется во вторич-ном кэше большинства системных плат. Однако ему присущ серьезный недоста-ток. Если в процессе выполнения программы процессор поочередно будет обращаться по одному и тому же адресу строки, но разными или циклически изменяющимися номерами тэгов, то постоянно будут фиксироваться кэш-промахи и кэш-память вместо ускорения будет вносить замедление в обмен с памятью. Переклю-чение страниц в многозадачных операционных системах (ОС) также снижает количество кэш-попаданий, что отражается на производительности системы. Увеличение размера кэша при сохранении архитектуры прямого отображения даст не очень существенный эф-фект, поскольку разные задачи будут претендовать на одни и те же строки кэша. Не увеличивая объема кэша, .можно повысить эффективность кэширования изме-нением его структуры, о чем пойдет речь ниже.

Иногда в описании кэша прямого отображения фигурирует понятие набор, которое применяется вместо термина строка в секторированном кэше прямого отображения, а сектор тогда называют строкой. С набо-ром (как и строкой несекторированного кэша) связана информация о теге, отно-сящаяся ко всем элементам набора (строкам или секторам). Кроме того, каждый элемент набора (строка или сектор) имеет собственный бит действительности (рис. 2).

Рис. 2. Секторированный кэш прямого отображения

Наборно-ассоциативный (частично-ассоциативный) кэш.

Наборно-ассоцативная архитектура КЭШа (рис. 3) позволяет каждому блоку кэшируемой памяти претендовать на одну из нескольких строк кэша, объединенных в набор. В этой архитектуре есть, как бы, несколько параллельно и согласованно работающих каналов прямого отображения, где контроллеру кэша приходится при-нимать решение о том, в какую из строк набора помещать очередной блок данных. Например, в простейшем случае каждый блок памяти может помещаться в одну из четырех строк набора (четырехканальный наборно-ассоциативный кэш). Номер набора, в котором может отображаться затребованный блок дан-ных, однозначно определяется средней частью адреса (как номер строки в кэше прямого отображения). Строка набора, отображающая требуемый блок, опреде-ляется сравнением тегов (как и в ассоциативном кэше), параллельно выполняе-мым для всех строк памяти тэгов данного набора (каналов кэша). Кроме того, с каждым набором должен быть связан признак, определяющий строку набора, подлежащую замещению новым блоком данных в случае кэш-промаха (на рисунке в ее сторону указывает стрелка).

Рис. 3. Четырехканальный наборно-ассоциативный кэш

Канди-датом на замещение обычно выбирается строка, к которой дольше всего не обраща-лись (алгоритм LRU - Least Recently Used). При относительно большом количе-стве каналов (строк в наборе) прибегают к некоторому упрощению - алгоритм Pseudo-LRU для четырех строк позволяет при-нимать решения, используя всего 3 бита.

Возможно также применение алгоритма замещения FIFO (первым вошел - первым вышел) или даже случайного замещения, что проще, но менее эффективно. Наборно-ассоциативная архитектура широко применяется для первичного кэша современных процессоров.

Ассоциативный кэш.

В отличие от предыдущих у полностью ассоциативного кэша любая его строка может отображать любой блок памяти, что существенно повышает эффективность использования ограниченного объема кэша. При этом все биты

Рис. 4. Полностью ассоциативная кэш-память.

Адреса кэшированного блока, за вычетом битов, определяющих положение (смещение) данных в строке, хранятся в памяти тегов. В такой архитектуре (рис. 4) для определения наличия затребованных данных в кэш-памяти требуется сравнение со старшей частью ад-реса тегов всех строк памяти тэгов, а не одной или нескольких, как при прямом отображении или наборно-ассоциативной архитектуре. Последовательный пере-бор ячеек памяти тегов отпадает. (на это требуется слишком много времени), поэтому остается параллельное сравнение тэгов всех ячеек, а это является сложной аппаратной за-дачей, которая приемлемо решаема только для небольших объемов первичного кэша (процессор М2 Cyrix).

Разработчики кэш-памяти столкнулись с проблемой, состоящей в том, что потенциально в кэш-памяти может оказаться любая ячейка огромной основной памяти. Если рабочий набор данных, используемых в программе, достаточно большой, то это означает, что за каждое место в кэш-памяти будут соревноваться многие фрагменты основной памяти. Как ранее уже сообщалось, нередко соотношение между кэш-памятью и основной памятью составляет 1 к 1000.

3.3.1 Ассоциативность

Можно было бы реализовать кэш-память, в которой каждая кэш-строка может хранить копию любой ячейки памяти. Это называется полностью ассоциативной кэш-памятью (fully associative cache ). Чтобы получить доступ к кэш-строке, ядро процессора должно было бы сравнить теги всех до единой кэш-строк с тегом запрашиваемого адреса. Тег должен будет хранить весь адрес, который не будет указываться смещение в кэш-строке (это означает, что значение S, показанное на рисунке в разделе 3.2, будет равно нулю).

Есть кэш-память, которая реализована подобным образом, но взглянуть на размеры кэш-памяти L2, используемой в настоящее время, то видно, что это непрактично. Учтите, что 4 Мб кэш-памяти с кэш-строками размером в 64Б должна иметь 65 536 записей. Чтобы получить адекватную производительность, логические схемы кэш-памяти должны быть в состоянии в течение нескольких циклов выбрать из всех этих записей ту, которая соответствует заданному тегу. Затраты на реализацию такой схемы будут огромными.

Рис.3.5: Схематическое изображение полностью ассоциативной кэш-памяти

Для каждой кэш-строки требуется, чтобы компаратор выполнил сравнение тега большого размера (заметьте, S равно нулю). Буква, стоящая рядом с каждым соединением, обозначает ширину соединения в битах. Если ничего не указано, то ширина соединения равна одному биту. Каждый компаратор должен сравнивать два значения, ширина каждого из которых равна Т бит. Затем, исходя из результата, должно выбираться и стать доступным содержимое соответствующей кэш-строки. Для этого потребуется объединить столько наборов линий данных О, сколько есть сегментов кэш-памяти (cache buckets). Число транзисторов, необходимых для реализации одного компаратора будет большим в частности из-за того, что компаратор должен работать очень быстро. Итеративный компаратор использовать нельзя. Единственный способ сэкономить на количестве компараторов, это снизить их число с помощью итеративного сравнения тегов. Это не подходит по той же самой причине, по которой не подходят итеративные компараторы: на это потребуется слишком много времени.

Полностью ассоциативная кэш-память практична для кэш-памяти малого размера (например, кэш-память TLB в некоторых процессорах Intel является полностью ассоциативной), но эта кэш-память должна быть небольшой - действительно небольшой. Речь идет максимум о нескольких десятках записей.

Для кэш-памяти L1i, L1d и кэш-памяти более высокого уровня необходим другой подход. Все, что можно сделать, это ограничить поиск. В самом крайнем случае каждый тег отображается точно в одну кэш-запись. Расчет прост: для кэш-памяти 4MB/64B с 65 536 записями мы можем напрямую обращаться к каждому элементу и использовать для этого с 6-го по 21-й биты адреса (16 битов). Младшие 6 битов являются индексом кэш-строки.


Рис.3.6: Схематическое изображение кэш-памяти с прямым отображением

Как видно из рисунка 3.6 реализация такой кэш-памяти с прямым отображением (direct-mapped cache ) может быть быстрой и простой. Для нее требуется только один компаратор, один мультиплексор (на этой схеме приведены два, поскольку тег и данные разделены, но это не является строгим конструктивным требованием) и некоторая логическая схема для выбора контента, содержащего действительно допустимые кэш-строки. Компаратор сложный из-за требований, касающихся скорости, но теперь он только один; в результате можно потратить больше усилий, чтобы сделать его более быстрым. Реальная сложность такого подхода заключена в мультиплексорах. Количество транзисторов в простом мультиплексоре растет по закону O(log N), где N является количеством кэш-строк. Это приемлемо, но может получиться медленный мультиплексор, и в этом случае скорость можно увеличить, если потратиться на транзисторы в мультиплексорах и для увеличения скорости распараллелить часть работы. Общее количество транзисторов будет расти медленное в сравнении с ростом размера кэш-памяти, что делает это решение очень привлекательным. Но у такого подхода есть недостаток: он работает только в случае, если адреса, используемые в программе, равномерно распределены относительно битов, используемых для прямого отображения. Если это не так, и это обычно бывает, некоторые кэш-записи используются активно и, поэтому, неоднократно высвобождаются, в то время как другие практически вообще не используются, либо остаются пустыми.


Рис.3.7: Схематическое изображение кэш-памяти с множественной ассоциативностью

Эту проблему можно решить с помощью кэш-памяти с множественной ассоциативностью (set associative ). Кэш-память с множественностью ассоциативностью сочетает в себе черты кэш-памяти с полной ассоциативностью и кэш-памяти с прямым отображением, что позволяет в значительной степени избежать недостатков этих решений. На рис.3.7 показана схема кэш-памяти с множественной ассоциативностью. Память под теги и под данные разделена на наборы, выбор которых осуществляется в соответствие с адресом. Это похоже на кэш-память с прямым отображением. Но вместо того, чтобы для каждого значения из набора использовать отдельный элемент, один и тот же набор используется для кэширования некоторого небольшого количества значений. Теги для всех элементов набора сравниваются параллельно, что похоже на функционирование полностью ассоциативной кэш-памяти.

Результатом является кэш-память, которая достаточно устойчива к промахам из-за неудачного или преднамеренного выбора адресов с одними и теми же номерами наборов в одно и то же время, а размер кэш-памяти не ограничен количеством компараторов, которые могут работать параллельно. Если кэш-память увеличивается (смотрите рисунок), то увеличивается только количество столбцов, а не количество строк. Число строк увеличивается только в том случае, если повышается ассоциативность кэш-памяти. Сегодня процессоры для кэш-памяти L2 используют уровни ассоциативности до 16 и выше. Для кэш-памяти L1 обычно используется уровень, равный 8.

Таблица 3.1: Влияние размера кэш-памяти, ассоциативности и размера кэш-строки

Размер
кэш-памяти
L2
Ассоциативность
Прямое отображение 2 4 8
CL=32 CL=64 CL=32 CL=64 CL=32 CL=64 CL=32 CL=64
512k 27 794 595 20 422 527 25 222 611 18 303 581 24 096 510 17 356 121 23 666 929 17 029 334
1M 19 007 315 13 903 854 16 566 738 12 127 174 15 537 500 11 436 705 15 162 895 11 233 896
2M 12 230 962 8 801 403 9 081 881 6 491 011 7 878 601 5 675 181 7 391 389 5 382 064
4M 7 749 986 5 427 836 4 736 187 3 159 507 3 788 122 2 418 898 3 430 713 2 125 103
8M 4 731 904 3 209 693 2 690 498 1 602 957 2 207 655 1 228 190 2 111 075 1 155 847
16M 2 620 587 1 528 592 1 958 293 1 089 580 1 704 878 883 530 1 671 541 862 324

Если у нас кэш-память 4MB/64B и 8-канальная ассоциативность, то в кэш-памяти у нас будет 8192 наборов и для адресации кэш-наборов потребуется только 13 битов тега. Чтобы определить, какая из записей (если таковая имеется) содержит в кэш-наборе адресуемую кэш-строку, потребуется сравнить 8 тегов. Это можно сделать за очень короткое время. Как видно из практики, в этом смысл есть.

В таблице 3.1 показано количество промахов кэш-памяти L2 для некоторой программы (в данном случае — для компилятора gcc, который, по мнению разработчиков ядра Linux, является наиболее важным бенчмарком) при изменении размера кэш-памяти, размера кэш-строки, а также значения множественной ассоциативности. В разделе 7.2 мы познакомимся с инструментальным средством, предназначенным для моделирования кэш-памяти, которое необходимо для этого теста.

Просто, если это еще не очевидно, взаимосвязь всех этих значений в том, что размер кэш-памяти равен

размер кэш-строки х ассоциативность х количество множеств

Отображение адресов в кэш-память вычисляется как

O = log2 от размера кэш-строки

S = log2 от числа наборов

согласно рисунку в разделе 3.2.


Рис.3.8: Размер кэш-памяти и уровень ассоциативности (CL=32)

Рис. 3.8 делает данные таблицы более понятными. На рисунке приведены данные для кэш-строки фиксированного размера, равного 32 байта. Если посмотреть на цифры для заданного размера кэш-памяти, то видно, что ассоциативность действительно может существенно помочь сократить число промахов кэш-памяти. Для кэш-памяти размером 8 МБ при переходе от прямого отображения на кэш-память с 2-канальной ассоциативностью экономится почти 44% кэш-памяти. В случае, если используется кэш-память со множественной ассоциативностью, то процессор может хранить в кэш-памяти рабочий набор большего размера, чем в случае кэш-памяти с прямым отображением.

В литературе иногда можно прочитать, что введение ассоциативности имеет тот же самый эффект, как удвоение размера кэш-памяти. Это, как это видно для случая перехода от кэш-памяти размером 4 МБ к кэш-памяти размером 8 МБ, верно в некоторых крайних случаях. Но это, конечно, не верно при последующем увеличении ассоциативности. Как видно из данных, последующее увеличение ассоциативности дает существенно меньший выигрыш. Нам, однако, не следует абсолютно не учитывать этот факт. В программе нашего примера пик использования памяти равен 5,6 MB. Так что при размере кэш-памяти в 8 Мб, что те же самые кэш-наборы будут использоваться многократно (более, чем дважды). С увеличением рабочего набора экономия может увеличиться, поскольку, как мы видим, при меньших размерах кэш-памяти преимущество от использования ассоциативности будет больше.

В целом, увеличение ассоциативность кэш-памяти выше 8, как кажется, дает слабый эффект при одном потоке рабочей нагрузки. С появлением многоядерных процессоров, которые используют общую кэш-память L2, ситуация меняется. Теперь у вас в основном есть две программы, которые обращаются к одной и той же кэш-памяти, в результате чего на практике эффект от использования ассоциативности должен увеличиться вдвое (или в четыре раза для четырехядерных процессоров). Таким образом, можно ожидать, что с увеличением числа ядер, ассоциативность общей кэш-памяти должна расти. Как это станет делать невозможным (16-канальную ассоциативность реализовывать уже трудно) разработчики процессоров начнут использовать общую кэш-память уровня L3 и далее, в то время как кэш-память уровня L2 будет, потенциально, совместно использоваться некоторым подмножеством ядер.

Другой эффект, который мы можем увидеть на рис.3.8, это то, как увеличение размера кэш-памяти способствует увеличению производительности. Эти данные нельзя интерпретировать без знания размера рабочего набора. Очевидно, что кэш-память такого размера, как основная память, должен привести к лучшим результатам, нежели кэш-память меньшего размера, так что в целом нет никаких ограничений на увеличение размера кэш-памяти и получения ощутимых преимуществ.

Как уже упоминалось выше, размер рабочего набора в его пиковом значении равен 5,6 Мб. Это значение не позволяет нам рассчитать размер памяти, который бы принес максимальную выгоду, но позволяет оценить этот размер. Проблема в том, что вся память используется не непрерывно и, следовательно, у нас есть конфликты даже при наличии 16M кэш-памяти и рабочего набора, размер которого равен 5,6M (вспомните преимущество 2-канальной ассоциативной кэш-памяти размером в 16 МБ над версией с прямым отображением). Но можно с уверенностью сказать, что при такой нагрузке преимущество кэш-памяти размером в 32 МБ будет несущественным. Однако кто сказал, что рабочий набор должен оставаться неизменным? С течением времени рабочие нагрузки растут и то же самое должно касаться размера кэш-памяти. Когда покупаются машины и принимается решение, за какой размер кэш-памяти требуется заплатить, стоит измерить размер рабочего набора. Почему это важно, можно увидеть на рис. 3.10.


Рис.3.9: Размещение памяти, используемой при тестировании

Запускается два типа тестов. В первом тесте элементы обрабатываются последовательно. В тестовой программе используется указатель n , но элементы массива связаны друг с другом, так что они обходятся в том порядке, в котором они находятся в памяти. Этот вариант показан в нижней части рис.3.9. Есть одна обратная ссылка, идущая от последнего элемента. Во втором тесте (верхняя часть рисунка) элементы массива обходятся в произвольном порядке. В обоих случаях элементы массива образуют циклический односвязный список.

За счет чего же мы наблюдаем постоянный рост производительности однопоточных программ? В данный момент мы находимся на той ступени развития микропроцессорных технологий, когда прирост скорости работы однопоточных приложений зависит только от памяти. Количество ядер растет, но частота зафиксировалась в пределах 4 ГГц и не дает прироста производительности.

Скорость и частота работы памяти - это то основное за счет чего мы получаем «свой кусок бесплатного торта» (ссылка). Именно поэтому важно использовать память, настолько эффективно, насколько мы можем это делать, а тем более такую быструю как кэш. Для оптимизации программы под конкретный компьютер, полезно знать характеристики кэш-памяти процессора: количество уровней, размер, длину строки. Особенно это важно в высокопроизводительном коде - ядра систем, математические библиотеки.

Как же определить характеристики кэша автоматический? (естественно cpuinfo распарсить не считается, хотя-бы потому-что в конечном итоге мы бы хотели получить алгоритм, который можно без труда реализовать в других ОС. Удобно, не правда ли?) Именно этим мы сейчас и займемся.

Немного теории

В данный момент существуют и широко используются три разновидности кэш-памяти: кэш с прямым отображением, ассоциативный кэш и множественно-ассоциативный кэш.
Кэш с прямым отображением (direct mapping cache)
- данная строка ОЗУ может быть отображена в единственную строку кэша, но в каждую строку кэша может быть отображено много возможных строк ОЗУ.
Ассоциативный кэш (fully associative cache)
- любая строка ОЗУ может быть отображена в любую строку кэша.
Множественно-ассоциативный кэш
- кэш-память делится на несколько «банков», каждый из которых функционирует как кэш с прямым отображением, таким образом строка ОЗУ может быть отображена не в единственную возможную запись кэша (как было бы в случае прямого отображения), а в один из нескольких банков; выбор банка осуществляется на основе LRU или иного механизма для каждой размещаемой в кэше строки.

LRU - вытеснение самой «долго не использованной» строки, кэш памяти.

Идея

Чтобы определить количество уровней кэша нужно рассмотреть порядок обращений к памяти, на котором будет четко виден переход. Разные уровни кэша отличаются прежде всего скоростью отклика памяти. В случае «кэш-промаха» для кэша L1 будет произведен поиск данных в следующих уровнях памяти, при этом если размер данных больше L1 и меньше L2 - то скоростью отклика памяти будет скорость отклика L2. Предыдущее утверждение так же верно в общем случаи.

Ясно что нужно подобрать тест на котором, мы будем четко видеть кэш промахи и протестировать его на различных размерах данных.

Зная логику множественно-ассоциативных кэшей, работающих по алгоритму LRU не трудно придумать алгоритм на котором кэш «валится», ничего хитрого - проход по строке. Критерием эффективности будем считать время одного обращения к памяти. Естественно нужно последовательно обращаться ко всем элементам строки, повторяя многократно для усреднения результата. К примеру возможны случаи, когда строка умещается в кэше но для первого прохода мы грузим строку из оперативной памяти и потому получаем совсем неадекватное время.

Хочется увидеть что-то подобное ступенькам, проходя по строкам разной длины. Для определения характера ступенек рассмотрим пример прохода по строке для прямого и ассоциативного кэша, случай с множественно-ассоциативным кэшем будет среднем между кэшем с прямым отображением и ассоциативным кэшем.

Ассоциативный кэш

Как только размер данных превышает размер кэш-памяти,
полностью ассоциативный кэш «промахивается» при каждом обращении к памяти.

Прямой кэш

Рассмотрим разные размеры строк. - показывает максимальное количество промахов, которое потратит процессор для доступа к элементам массива при следующем проходе по строке.

Как видно время доступа к памяти возрастает не резко, а по мере увеличения объема данных. Как только размер данных превысит размер кэша, то промахи будут при каждом обращении к памяти.

Потому у ассоциативного кэша ступенька будет вертикальной, а у прямого - плавно возрастать вплоть до двойного размера кэша. Множественно ассоциативный кэш будет средним случаем, «бугорком», хотя бы потому, что время-доступа не может быть лучше прямого.

Если-же говорить о памяти - то самая быстрая это кэш, следом идет оперативная, самая медленная это swap, про него мы в дальнейшем говорить не будем. В свою очередь у разных уровней кэша (как правило сегодня процессоры имеют 2-3 уровня кэша) разная скорость отклика памяти: чем больше уровень, тем меньше скорость отклика. И поэтому, если строка помещается в первый уровень кэша, (который кстати полностью ассоциативный) время отклика будет меньше, чем у строки значительно превышающей размеры кэша первого уровня. По-этому на графике времени отклика памяти от размеров строки будет несколько плато - плато* отклика памяти, и плато вызванные различными уровнями кэша.

*Плато функции - { i:x, f(xi) - f(xi+1) < eps: eps → 0 }

Приступим к реализации

Для реализации будем использовать Си (ANSI C99).

Быстро написан код, обычный проход по строкам разной длины, меньше 10мб, выполняющийся многократно. (Будем приводить небольшие куски программы, несущие смысловую нагрузку).

For (i = 0; i < 16; i++) { for (j = 0; j < L_STR; j++) A[j]++; }

Смотрим на график - и видим одну большую ступеньку. Но ведь в теории получается все, просто замечательно. Стало быть нужно понять: из за чего это происходит? И как это исправить?

Очевидно что это может происходить по двум причинам: либо в процессоре нет кэш памяти, либо процессор так хорошо угадывает обращения к памяти. Поскольку первый вариант ближе к фантастике причина всему хорошее предсказание обращений.

Дело в том, что сегодня далеко не топовые процессоры, помимо принципа пространственной локальности, предсказывают также и арифметическую прогрессию в порядке обращения к памяти. Поэтому нужно рандомизовать обращения к памяти.

Длина рандомизованного массива должна быть сопоставимой с длиной основной строки, чтобы избавиться от большой гранулярности обращений, так же длина массива не должна быть степенью двойки, из-за этого происходили «наложения» - следствием чего могут - быть выбросы. Лучше всего задать гранулярность константно, в том числе, если гранулярность простое число, то можно избежать эффектов наложений. А длина рандомиованого массива - функция от длинны строки.
for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ random[x] + m ]; } } }

После чего мы удивили столь долгожданную «картинку», о которой говорили в начале.

Программа разбита на 2 части - тест и обработка данных. Написать скрипт в 3 строки для запуска или 2 раза запустить ручками решайте сами.

Листинг файла size.с Linux

#include #include #include #include #define T char #define MAX_S 0x1000000 #define L 101 volatile T A; int m_rand; int main (){ static struct timespec t1, t2; memset ((void*)A, 0, sizeof (A)); srand(time(NULL)); int v, M; register int i, j, k, m, x; for (k = 1024; k < MAX_S;) { M = k / L; printf("%g\t", (k+M*4)/(1024.*1024)); for (i = 0; i < M; i++) m_rand[i] = L * i; for (i = 0; i < M/4; i++) { j = rand() % M; x = rand() % M; m = m_rand[j]; m_rand[j] = m_rand[i]; m_rand[i] = m; } if (k < 100*1024) j = 1024; else if (k < 300*1024) j = 128; else j = 32; clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &t1); for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ m_rand[x] + m ]; } } } clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &t2); printf ("%g\n",1000000000. * (((t2.tv_sec + t2.tv_nsec * 1.e-9) - (t1.tv_sec + t1.tv_nsec * 1.e-9)))/(double)(L*M*j)); if (k >

Листинг файла size.с Windows

#include #include #include #include #include #include using namespace std; #define T char #define MAX_S 0x1000000 #define L 101 volatile T A; int m_rand; int main (){ LARGE_INTEGER freq; LARGE_INTEGER time1; LARGE_INTEGER time2; QueryPerformanceFrequency(&freq); memset ((void*)A, 0, sizeof (A)); srand(time(NULL)); int v, M; register int i, j, k, m, x; for (k = 1024; k < MAX_S;) { M = k / L; printf("%g\t", (k+M*4)/(1024.*1024)); for (i = 0; i < M; i++) m_rand[i] = L * i; for (i = 0; i < M/4; i++) { j = rand() % M; x = rand() % M; m = m_rand[j]; m_rand[j] = m_rand[i]; m_rand[i] = m; } if (k < 100*1024) j = 1024; else if (k < 300*1024) j = 128; else j = 32; QueryPerformanceCounter(&time1); for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ m_rand[x] + m ]; } } } QueryPerformanceCounter(&time2); time2.QuadPart -= time1.QuadPart; double span = (double) time2.QuadPart / freq.QuadPart; printf ("%g\n",1000000000. * span/(double)(L*M*j)); if (k > 100*1024) k += k/16; else k += 4*1024; } return 0; }

В общем- то думаю все понятно, но хотелось бы оговорить несколько моментов.

Массив A объявлен как volatile - эта директива гарантирует нам что к массиву A всегда будут обращения, то-есть их не «вырежут» ни оптимизатор, ни компилятор. Так-же стоит оговорить то что вся вычислительная нагрузка выполняется до замера времени, что позволяет нам, уменьшить фоновое влияние.

Файл переведен в ассемблер на Ubuntu 12.04 и компилятором gcc 4.6 - циклы сохраняются.

Обработка данных

Для обработки данных логично использовать производные. И несмотря на то что с повышением порядка дифференцирования шумы возрастают, будет использована вторая производная и её свойства. Как бы не была зашумлена вторая производная, нас интересует лишь знак второй производной.

Находим все точки, в которых вторая производная больше нуля (с некоторой погрешностью потому-что вторая производная, помимо того что считается численно, - сильно зашумлена). Задаем функцию зависимости знака второй производной функции от размера кэша. Функция принимает значение 1 в точках, где знак второй производной больше нуля, и ноль, если знак второй производной меньше или равен нулю.

Точки «взлетов» - начало каждой ступеньки. Также перед обработкой данных нужно убрать одиночные выбросы, которые не меняют смысловой нагрузки данных, но создают ощутимый шум.

Листинг файла data_pr.с
#include #include #include double round (double x) { int mul = 100; if (x > 0) return floor(x * mul + .5) / mul; else return ceil(x * mul - .5) / mul; } float size, time, der_1, der_2; int main(){ size = 0; time = 0; der_1 = 0; der_2 = 0; int i, z = 110; for (i = 1; i < 110; i++) scanf("%g%g", &size[i], &time[i]); for (i = 1; i < z; i++) der_1[i] = (time[i]-time)/(size[i]-size); for (i = 1; i < z; i++) if ((time[i]-time)/(size[i]-size) > 2) der_2[i] = 1; else der_2[i] = 0; //comb for (i = 0; i < z; i++) if (der_2[i] == der_2 && der_2 != der_2[i]) der_2 = der_2[i]; for (i = 0; i < z-4; i++) if (der_2[i] == der_2 && der_2[i] != der_2 && der_2[i] != der_2) { der_2 = der_2[i]; der_2 = der_2[i]; } for (i = 0; i < z-4; i++) if (der_2[i] == der_2 && der_2[i] != der_2 && der_2[i] != der_2 && der_2[i] != der_2) { der_2 = der_2[i]; der_2 = der_2[i]; der_2 = der_2[i]; } // int k = 1; for (i = 0; i < z-4; i++){ if (der_2[i] == 1) printf("L%d = %g\tMb\n", k++, size[i]); while (der_2[i] == 1) i++; } return 0; }

Тесты

CPU/ОС/версия ядра/компилятор/ключи компиляции - будут указаны для каждого теста.

  • Intel Pentium CPU P6100 @2.00GHz / Ubuntu 12.04 / 3.2.0-27-generic / gcc -Wall -O3 size.c -lrt

    L1 = 0.05 Mb
    L2 = 0.2 Mb
    L3 = 2.7 Mb

  • Не буду приводить все хорошие тесты, давайте лучше поговорим о «Граблях»

Давайте поговорим о «граблях»

Грабля обнаружилась при обработке данных на серверном процессоре Intel Xeon 2.4/L2 = 512 кб/Windows Server 2008

Проблема заключается в маленьком количестве точек, попадающих на интервал выхода на плато, - соответственно, скачок второй производной незаметен и принимается за шум.

Можно решить эту проблему методом наименьших квадратов, либо прогонять тесты в по ходу определения зон плато.

Хотелось бы услышать ваши предложения, по поводу решения этой проблемы.

Список литературы

  • Макаров А.В. Архитектура ЭВМ и Низкоуровневое программирование.
  • Ulrich Drepper What every programmer should know about memory

За счет чего же мы наблюдаем постоянный рост производительности однопоточных программ? В данный момент мы находимся на той ступени развития микропроцессорных технологий, когда прирост скорости работы однопоточных приложений зависит только от памяти. Количество ядер растет, но частота зафиксировалась в пределах 4 ГГц и не дает прироста производительности.

Скорость и частота работы памяти - это то основное за счет чего мы получаем «свой кусок бесплатного торта» (ссылка). Именно поэтому важно использовать память, настолько эффективно, насколько мы можем это делать, а тем более такую быструю как кэш. Для оптимизации программы под конкретный компьютер, полезно знать характеристики кэш-памяти процессора: количество уровней, размер, длину строки. Особенно это важно в высокопроизводительном коде - ядра систем, математические библиотеки.

Как же определить характеристики кэша автоматический? (естественно cpuinfo распарсить не считается, хотя-бы потому-что в конечном итоге мы бы хотели получить алгоритм, который можно без труда реализовать в других ОС. Удобно, не правда ли?) Именно этим мы сейчас и займемся.

Немного теории

В данный момент существуют и широко используются три разновидности кэш-памяти: кэш с прямым отображением, ассоциативный кэш и множественно-ассоциативный кэш.
Кэш с прямым отображением (direct mapping cache)
- данная строка ОЗУ может быть отображена в единственную строку кэша, но в каждую строку кэша может быть отображено много возможных строк ОЗУ.
Ассоциативный кэш (fully associative cache)
- любая строка ОЗУ может быть отображена в любую строку кэша.
Множественно-ассоциативный кэш
- кэш-память делится на несколько «банков», каждый из которых функционирует как кэш с прямым отображением, таким образом строка ОЗУ может быть отображена не в единственную возможную запись кэша (как было бы в случае прямого отображения), а в один из нескольких банков; выбор банка осуществляется на основе LRU или иного механизма для каждой размещаемой в кэше строки.

LRU - вытеснение самой «долго не использованной» строки, кэш памяти.

Идея

Чтобы определить количество уровней кэша нужно рассмотреть порядок обращений к памяти, на котором будет четко виден переход. Разные уровни кэша отличаются прежде всего скоростью отклика памяти. В случае «кэш-промаха» для кэша L1 будет произведен поиск данных в следующих уровнях памяти, при этом если размер данных больше L1 и меньше L2 - то скоростью отклика памяти будет скорость отклика L2. Предыдущее утверждение так же верно в общем случаи.

Ясно что нужно подобрать тест на котором, мы будем четко видеть кэш промахи и протестировать его на различных размерах данных.

Зная логику множественно-ассоциативных кэшей, работающих по алгоритму LRU не трудно придумать алгоритм на котором кэш «валится», ничего хитрого - проход по строке. Критерием эффективности будем считать время одного обращения к памяти. Естественно нужно последовательно обращаться ко всем элементам строки, повторяя многократно для усреднения результата. К примеру возможны случаи, когда строка умещается в кэше но для первого прохода мы грузим строку из оперативной памяти и потому получаем совсем неадекватное время.

Хочется увидеть что-то подобное ступенькам, проходя по строкам разной длины. Для определения характера ступенек рассмотрим пример прохода по строке для прямого и ассоциативного кэша, случай с множественно-ассоциативным кэшем будет среднем между кэшем с прямым отображением и ассоциативным кэшем.

Ассоциативный кэш

Как только размер данных превышает размер кэш-памяти,
полностью ассоциативный кэш «промахивается» при каждом обращении к памяти.

Прямой кэш

Рассмотрим разные размеры строк. - показывает максимальное количество промахов, которое потратит процессор для доступа к элементам массива при следующем проходе по строке.

Как видно время доступа к памяти возрастает не резко, а по мере увеличения объема данных. Как только размер данных превысит размер кэша, то промахи будут при каждом обращении к памяти.

Потому у ассоциативного кэша ступенька будет вертикальной, а у прямого - плавно возрастать вплоть до двойного размера кэша. Множественно ассоциативный кэш будет средним случаем, «бугорком», хотя бы потому, что время-доступа не может быть лучше прямого.

Если-же говорить о памяти - то самая быстрая это кэш, следом идет оперативная, самая медленная это swap, про него мы в дальнейшем говорить не будем. В свою очередь у разных уровней кэша (как правило сегодня процессоры имеют 2-3 уровня кэша) разная скорость отклика памяти: чем больше уровень, тем меньше скорость отклика. И поэтому, если строка помещается в первый уровень кэша, (который кстати полностью ассоциативный) время отклика будет меньше, чем у строки значительно превышающей размеры кэша первого уровня. По-этому на графике времени отклика памяти от размеров строки будет несколько плато - плато* отклика памяти, и плато вызванные различными уровнями кэша.

*Плато функции - { i:x, f(xi) - f(xi+1) < eps: eps → 0 }

Приступим к реализации

Для реализации будем использовать Си (ANSI C99).

Быстро написан код, обычный проход по строкам разной длины, меньше 10мб, выполняющийся многократно. (Будем приводить небольшие куски программы, несущие смысловую нагрузку).

For (i = 0; i < 16; i++) { for (j = 0; j < L_STR; j++) A[j]++; }

Смотрим на график - и видим одну большую ступеньку. Но ведь в теории получается все, просто замечательно. Стало быть нужно понять: из за чего это происходит? И как это исправить?

Очевидно что это может происходить по двум причинам: либо в процессоре нет кэш памяти, либо процессор так хорошо угадывает обращения к памяти. Поскольку первый вариант ближе к фантастике причина всему хорошее предсказание обращений.

Дело в том, что сегодня далеко не топовые процессоры, помимо принципа пространственной локальности, предсказывают также и арифметическую прогрессию в порядке обращения к памяти. Поэтому нужно рандомизовать обращения к памяти.

Длина рандомизованного массива должна быть сопоставимой с длиной основной строки, чтобы избавиться от большой гранулярности обращений, так же длина массива не должна быть степенью двойки, из-за этого происходили «наложения» - следствием чего могут - быть выбросы. Лучше всего задать гранулярность константно, в том числе, если гранулярность простое число, то можно избежать эффектов наложений. А длина рандомиованого массива - функция от длинны строки.
for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ random[x] + m ]; } } }

После чего мы удивили столь долгожданную «картинку», о которой говорили в начале.

Программа разбита на 2 части - тест и обработка данных. Написать скрипт в 3 строки для запуска или 2 раза запустить ручками решайте сами.

Листинг файла size.с Linux

#include #include #include #include #define T char #define MAX_S 0x1000000 #define L 101 volatile T A; int m_rand; int main (){ static struct timespec t1, t2; memset ((void*)A, 0, sizeof (A)); srand(time(NULL)); int v, M; register int i, j, k, m, x; for (k = 1024; k < MAX_S;) { M = k / L; printf("%g\t", (k+M*4)/(1024.*1024)); for (i = 0; i < M; i++) m_rand[i] = L * i; for (i = 0; i < M/4; i++) { j = rand() % M; x = rand() % M; m = m_rand[j]; m_rand[j] = m_rand[i]; m_rand[i] = m; } if (k < 100*1024) j = 1024; else if (k < 300*1024) j = 128; else j = 32; clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &t1); for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ m_rand[x] + m ]; } } } clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &t2); printf ("%g\n",1000000000. * (((t2.tv_sec + t2.tv_nsec * 1.e-9) - (t1.tv_sec + t1.tv_nsec * 1.e-9)))/(double)(L*M*j)); if (k >

Листинг файла size.с Windows

#include #include #include #include #include #include using namespace std; #define T char #define MAX_S 0x1000000 #define L 101 volatile T A; int m_rand; int main (){ LARGE_INTEGER freq; LARGE_INTEGER time1; LARGE_INTEGER time2; QueryPerformanceFrequency(&freq); memset ((void*)A, 0, sizeof (A)); srand(time(NULL)); int v, M; register int i, j, k, m, x; for (k = 1024; k < MAX_S;) { M = k / L; printf("%g\t", (k+M*4)/(1024.*1024)); for (i = 0; i < M; i++) m_rand[i] = L * i; for (i = 0; i < M/4; i++) { j = rand() % M; x = rand() % M; m = m_rand[j]; m_rand[j] = m_rand[i]; m_rand[i] = m; } if (k < 100*1024) j = 1024; else if (k < 300*1024) j = 128; else j = 32; QueryPerformanceCounter(&time1); for (i = 0; i < j; i++) { for (m = 0; m < L; m++) { for (x = 0; x < M; x++){ v = A[ m_rand[x] + m ]; } } } QueryPerformanceCounter(&time2); time2.QuadPart -= time1.QuadPart; double span = (double) time2.QuadPart / freq.QuadPart; printf ("%g\n",1000000000. * span/(double)(L*M*j)); if (k > 100*1024) k += k/16; else k += 4*1024; } return 0; }

В общем- то думаю все понятно, но хотелось бы оговорить несколько моментов.

Массив A объявлен как volatile - эта директива гарантирует нам что к массиву A всегда будут обращения, то-есть их не «вырежут» ни оптимизатор, ни компилятор. Так-же стоит оговорить то что вся вычислительная нагрузка выполняется до замера времени, что позволяет нам, уменьшить фоновое влияние.

Файл переведен в ассемблер на Ubuntu 12.04 и компилятором gcc 4.6 - циклы сохраняются.

Обработка данных

Для обработки данных логично использовать производные. И несмотря на то что с повышением порядка дифференцирования шумы возрастают, будет использована вторая производная и её свойства. Как бы не была зашумлена вторая производная, нас интересует лишь знак второй производной.

Находим все точки, в которых вторая производная больше нуля (с некоторой погрешностью потому-что вторая производная, помимо того что считается численно, - сильно зашумлена). Задаем функцию зависимости знака второй производной функции от размера кэша. Функция принимает значение 1 в точках, где знак второй производной больше нуля, и ноль, если знак второй производной меньше или равен нулю.

Точки «взлетов» - начало каждой ступеньки. Также перед обработкой данных нужно убрать одиночные выбросы, которые не меняют смысловой нагрузки данных, но создают ощутимый шум.

Листинг файла data_pr.с
#include #include #include double round (double x) { int mul = 100; if (x > 0) return floor(x * mul + .5) / mul; else return ceil(x * mul - .5) / mul; } float size, time, der_1, der_2; int main(){ size = 0; time = 0; der_1 = 0; der_2 = 0; int i, z = 110; for (i = 1; i < 110; i++) scanf("%g%g", &size[i], &time[i]); for (i = 1; i < z; i++) der_1[i] = (time[i]-time)/(size[i]-size); for (i = 1; i < z; i++) if ((time[i]-time)/(size[i]-size) > 2) der_2[i] = 1; else der_2[i] = 0; //comb for (i = 0; i < z; i++) if (der_2[i] == der_2 && der_2 != der_2[i]) der_2 = der_2[i]; for (i = 0; i < z-4; i++) if (der_2[i] == der_2 && der_2[i] != der_2 && der_2[i] != der_2) { der_2 = der_2[i]; der_2 = der_2[i]; } for (i = 0; i < z-4; i++) if (der_2[i] == der_2 && der_2[i] != der_2 && der_2[i] != der_2 && der_2[i] != der_2) { der_2 = der_2[i]; der_2 = der_2[i]; der_2 = der_2[i]; } // int k = 1; for (i = 0; i < z-4; i++){ if (der_2[i] == 1) printf("L%d = %g\tMb\n", k++, size[i]); while (der_2[i] == 1) i++; } return 0; }

Тесты

CPU/ОС/версия ядра/компилятор/ключи компиляции - будут указаны для каждого теста.

  • Intel Pentium CPU P6100 @2.00GHz / Ubuntu 12.04 / 3.2.0-27-generic / gcc -Wall -O3 size.c -lrt

    L1 = 0.05 Mb
    L2 = 0.2 Mb
    L3 = 2.7 Mb

  • Не буду приводить все хорошие тесты, давайте лучше поговорим о «Граблях»

Давайте поговорим о «граблях»

Грабля обнаружилась при обработке данных на серверном процессоре Intel Xeon 2.4/L2 = 512 кб/Windows Server 2008

Проблема заключается в маленьком количестве точек, попадающих на интервал выхода на плато, - соответственно, скачок второй производной незаметен и принимается за шум.

Можно решить эту проблему методом наименьших квадратов, либо прогонять тесты в по ходу определения зон плато.

Хотелось бы услышать ваши предложения, по поводу решения этой проблемы.

Список литературы

  • Макаров А.В. Архитектура ЭВМ и Низкоуровневое программирование.
  • Ulrich Drepper What every programmer should know about memory