Перемножение эпюр моментов. Определение перемещений с помощью способа верещагина. Формулы трапеций и Симпсона

В случаях, когда эпюра M z 1 (или M z ) ограничена прямыми линиями. По существу это прием графоаналитического вычисления определенного интеграла от произведения двух функций f (x ) и φ (x ), из которых одна, например φ (x ), линейная, т. е. имеет вид

Рассмотрим участок балки, в пределах которого эпюра изгибающих моментов от единичной нагрузки ограничена одной прямой линией M z 1 = kx + b , а изгибающий момент от заданной нагрузки изменяется по некоторому произвольному закону M z . Тогда в пределах этого участка

Второй интеграл представляет собой площадь ω эпюры M z на рассматриваемом участке, а первый - статический момент этой площади относительно оси y и поэтому равен произведению площадиω на координату ее центра тяжести x c . Таким образом,

.

Здесь kx c + b - ордината y c эпюры M z 1 под центром тяжести площади ω . Следовательно,

.

Произведение ω y c будет положительным, когда ω и y c расположены по одну сторону от оси эпюры, и отрицательным, если они находятся по разные стороны от этой оси.

Итак, по способу Верещагина операция интегрирования заменяется перемножением площади ω одной эпюры на ординату y c второй (обязательно линейной) эпюры, взятой под центром тяжести площади ω .

Важно всегда помнить, что такое «перемножением» эпюр возможно лишь на участке, ограниченном одной прямой той эпюры, с которой берется ордината y c . Поэтому при вычислении перемещений сечений балок способом Верещагина интеграл Мора по всей длине балки надо заменить суммой интегралов по участкам, в пределах которых эпюра моментов от единичной нагрузки не имеет изломов. Тогда

.

Для успешного применения способа Верещагина необходимо иметь формулы, по которым могут быть вычислены площади ω и координаты x c их центров тяжести. Приведенные в табл. 8.1 данные отвечают только наиболее простым случаям нагружения балки. Однако более сложные эпюры изгибающих моментов допустимо разбивать на простейшие фигуры, площади ω i , и координаты y ci которых известны, а затем находить произведение ω y c для такой сложной эпюры суммированием произведений площадей ω i ее частей на соответствующие им координаты y ci . Объясняется это тем, что разложение множимой эпюры на части равносильно представлению функции M z (x ) в интеграле (8.46) в виде суммы интегралов. В некоторых случаях упрощает расчеты построение расслоенных эпюр, т. е. от каждой из внешних сил и пар в отдельности.

Если обе эпюры M z и M z 1 линейные, конечный результат их перемножения не зависит от того, умножается ли площадь первой эпюры на ординату второй или, наоборот, площадь второй на ординату первой.

Для практического вычисления перемещений по способу Верещагина надо:

1) построить эпюру изгибающих моментов от заданной нагрузки (основная эпюра);

3) построить эпюру изгибающих моментов от единичной нагрузи (единичная эпюра);

4) разбить эпюры от заданных нагрузок на отдельные площади ω i и вычислить ординаты y Ci единичной эпюры под центрами тяжести этих площадей;

5) составить произведение ω i y Ci и просуммировать их.


Таблица 8.1.

Вид эпюры M z Площадь ω Координата центра тяжести x c
(*) - Эти формулы несправедливы для такого случая нагружения

Определение перемещений в системах, состоящих из прямоли­нейных элементов постоянной жесткости, можно значительно упростить путем применения специального приема вычисления

интеграла вида

В связи с тем что в подын­тегральное выражение входит произведение уси­лий Мт и Мп, являющих­ся ординатами эпюр, пост­роенных для единичного и действительного состояний, этот прием называют спо­собом перемножения эпюр. Его можно использовать в -случае, когда одна из пе­ремножаемых эпюр, нап­ример Мт, прямолинейна; в этом случае (рис. 5.17)

Мm = (х + a) tg а.

Вторая эпюра М п может иметь любое очертание (прямолинейное, ломаное

или криволинейное).

Подставим значение М m в выражение

где М п dx= dΩ n - дифференциал площади Ω n эпюры М n (рис. 5.17),

Интеграл представляет собой статический момент площади Ω n эпюры М п относительно оси 0-0" (рис. 5.17). Этот статический момент можно выразить иначе:

где хс-абсцисса центра тяжести площади эпюры Мn. Тогда

Но так как (см. рис. 5.17)

(5.26)

Таким образом, результат перемножения двух эпюр равен про­изведению площади одной из них на ординату ус другой (прямоли­нейной) эпюры, взятую под центром тяжести площади первой эпюры.

Способ перемножения эпюр предложен в 1925 г. студентом Мос­ковского института инженеров железнодорожного транспорта А. К. Верещагиным, а потому он называется правилом (или спосо­бом) Верещагина,

Заметим, что левая часть выражения (5.26) отличается от ин­теграла Мора отсутствием в ней жесткости сечения EJ. Следова­тельно, результат выполнения по правилу Верещагина перемноже­ния эпюр для определения искомого перемещения надо разделить на жесткость.

Очень важно отметить, что ордината ус должна быть взята обя­зательно из прямолинейной эпюры. Если обе эпюры прямолиней­ны, то ординату можно взять из любой эпюры. Так, если требуется перемножить прямолинейные эпюры Mi а Мк (рис. 518, а), то не имеет значения, что взять: произведение yk площади эпюры Mi на ординату yk под ее центром тяжести из эпюры Мк или про­изведение Ω_k yi площади эпюры М k на ординату уi под (или над) ее центром тяжести из эпюры Мг.

Когда перемножаются две эпюры, имеющие вид трапеции, то не надо находить положение центра тяжести площади одной из них. Следует одну из эпюр разбить на два треугольника и умножить площадь каждого из них на ординату под его центром тяжести из другой эпюры. Например, в случае, приведенном на рис. 518, б, получим

В круглых скобках этой формулы произведение ас левых орди­нат обеих эпюр и произведение bd правых ординат берутся с коэф­фициентом, равным двум» а произведения ad и bc ординат, расположенных с разных сторон,- с коэффициентом, равным единице.


С помощью формулы (5.27) можно перемножать эпюры, имеющие вид «перекрученных» трапеций; при этом произведения ординат, имеющих одинаковые знаки, берутся со знаком плюс, а разные - -минус. В случае, например, показанном на рис. 5.18,в, результат перемножения эпюр в виде «перекрученной» и обычной трапеций равен (l/6) (2ac-2bd+ad-bc), а в случае, показанном на рис. 5.18, г, равен (l/6) (-2ac-2bd+ad+bc).

Формула (5.27) применима и тогда, когда одна или обе перемно­жаемые эпюры имеют вид треугольника. В этих случаях треуголь­ник рассматривается как трапеция с одной крайней ординатой, равной нулю. Результат, например, перемножения эпюр, показан­ных на рис. 5.18, д, равен (l/6) (2ac+ad).

Умножение эпюры в виде «перекрученной» трапеции на любую другую эпюру можно производить и расчленяя «перекрученную» трапецию на два треугольника, как показано на рис. 5.18, е.


Лекция № 6. Расчет статически неопределимых плоских стержневых систем: балок, рам, ферм.

План лекции:

1. Метод сил.

1.1. Основная система. Основные неизвестные.

1.2. Система канонических уравнений метода сил для расчета на действие внешней нагрузки.

1.3. Расчет статически неопределимых систем методом сил.

2. Метод перемещений.

2.1. Выбор неизвестных и определение их числа.

2.2. Определение числа неизвестных

2.3. Основная система

2.4. Канонические уравнения

3. Основы расчета систем методом конечных элементов.

Лекция 13 (продолжение). Примеры решения на вычисление перемещений методом Мора-Верещагина и задачи для самостоятельного решения

Определение перемещений в балках

Пример 1.

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

Решение.

1) Составляем уравнение изгибающего момента от внешней силы M F .

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

4) Определяем перемещения

Пример 2.

Определить перемещение точки К балки по способу Верещагина.

Решение.

1) Строим грузовую эпюру.

2) Прикладываем в точке К единичную силу.

3) Строим единичную эпюру.

4) Определяем прогиб

Пример 3.

Определить углы поворота на опорах А и В

Решение.

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

Находим параметры эпюр

C 1 = 2/3, C 2 = 1/3,

а затем и углы поворота на опорах А и В

Пример 4.

Определить угол поворота сечения С для заданной балки (см. рис.).

Решение.

Определяем опорные реакции R A =R B ,

, , R A = R B = qa .

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С , где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина. Находим параметры эпюр

C 2 = -C 1 = -1/4,

а по ним и искомое перемещение

Пример 5.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

Эпюра M F (рис. б)

Опорные реакции:

ВЕ : , ,

, R B + R E = F , R E = 0;

АВ : , R А = R В = F ; , .

Вычисляем моменты в характерных точках , M B = 0, M C = Fa и строим эпюру изгибающего момента от заданной нагрузки.

Эпюра (рис. в).

В сечении С , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции ВЕ - , , = 2/3; , , = 1/3, а затем моменты в характерных точках , , .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр и :

,

Прогиб сечения С

Пример 6.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

С. Пользуясь правилом Верещагина, вычисляем параметры эпюр ,

и находим искомый прогиб

Пример 7.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

1. Построение эпюр изгибающих моментов.

Опорные реакции:

, , R A = 2qa ,

, R A + R D = 3qa , R D = qa .

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С .

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ :

Участок ВС :

Участок С D :

Искомое перемещение

Пример 8.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а ).

Решение.

1. Построение эпюр изгибающих моментов.

Эпюра М F (рис. в ). Определив опорные реакции

, , R B = 19qa /8,

, R D = 13qa /8, строим эпюры поперечной силы Q и изгибающего момента М F от заданной нагрузки.

Эпюра (рис. д). В сечении А , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е , где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру М F на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

-qa 3 /6

2qa 3 /3

-qa 3 /2

-qa 3 /2

C i

-qa 4 /2

5qa 4 /12

-qa 4 /6

-qa 4 /12

-qa 4 /24

Получаем .

Знак “минус” в результате означает, что точка А перемещается не вниз, как была направлена единичная сила, а вверх.

Угол поворота сечения Е находим двумя способами: по правилу Верещагина и по формуле Симпсона.

По правилу Верещагина, перемножая эпюры M F и , по аналогии с предыдущим получим

,

Для нахождения угла поворота по формуле Симпсона вычислим предварительно изгибающие моменты посредине участков:

Искомое перемещение, увеличенное в EI x раз,

Пример 9.

Определить, при каком значении коэффициента k прогиб сечения С будет равен нулю. При найденном значении k построить эпюру изгибающего момента и изобразить примерный вид упругой линии балки (см. рис.).

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в сечении С , где ищется прогиб.

По условию задачи V C = 0. С другой стороны, . Интеграл на участке АВ вычисляем по формуле Симпсона, а на участке ВС – по правилу Верещагина.

Находим предварительно

Перемещение сечения С ,

Отсюда , .

При найденном значении k определяем значение опорной реакции в точке А : , , , исходя из которого находим положение точки экстремума на эпюре М согласно условию .

По значениям момента в характерных точках

строим эпюру изгибающего момента (рис. г).

Пример 10.

В консольной балки, изображенной на рисунке.

Решение.

М от действия внешней сосредоточенной силы F : М В = 0, М А = –F 2l (эпюра линейная).

По условию задачи требуется определить вертикальное перемещение у В точки В консольной балки, поэтому строим единичную эпюру от действия вертикальной единичной силы F i = 1, приложенной в точке В .

Учитывая, что консольная балка состоит из двух участков с разной жесткостью на изгиб, эпюры и М перемножаем с помощью правила Верещагина по участкам отдельно. Эпюры М ипервого участка перемножаем по формуле , а эпюры второго участка – как площадь эпюры М второго участка Fl 2 / 2 на ординату 2l /3 эпюры второго участка под центром тяжести треугольной эпюры М этого же участка.

В этом случае формула дает:

Пример 11.

Определить вертикальное перемещение точки В однопролетной балки, изображенной на рисунке. Балка имеет постоянную по всей длине жесткость на изгиб EI .

Решение.

Строим эпюру изгибающих моментов М от действия внешней распределенной нагрузки: М А = 0; M D = 0;

Прикладываем в точке В единичную вертикальную силу F i = 1 и строим эпюру (см. рис.):

откуда R a = 2/3;

Откуда R d = 1/3, поэтому M a = 0; M d = 0; .

Разделим рассматриваемую балку на 3 участка. Перемножение эпюр 1-го и 3-го участков не вызывает трудностей, так как перемножаем треугольные эпюры. Для того чтобы применить правило Верещагина ко 2-му участку, разобьем эпюру М 2-го участка на две составляющие эпюры: прямоугольную и параболическую с площадью (см. таблицу).

Центр тяжести параболической части эпюры М лежит посередине 2-го участка.

Таким образом, формула при использовании правила Верещагина дает:

Пример 12.

Определить максимальный прогиб в двухопорной балке, нагруженной равномерно распределенной нагрузкой интенсивности q (см. рис.).

Решение.

Находим изгибающие моменты:

От заданной нагрузки

От единичной силы, приложенной в точке С , где ищется прогиб .

Вычисляем искомый наибольший прогиб, который возникает в среднем сечении балки

Пример 13.

Определить прогиб в точке В балки, показанной на рисунке.

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и единичной силы, приложенной в точке В. Чтобы перемножить эти эпюры, надо балку разбить на три участка, так как единичная эпюра ограничена тремя различными прямыми.

Операция перемножения эпюр на втором и третьем участках осуществляется просто. Затруднения возникают при вычислении площади и координат центра тяжести основной эпюры на первом участке. В таких случаях намного упрощает решение задачи построение расслоенных эпюр. При этом удобно одно из сечений принять условно за неподвижное и строить эпюры от каждой из нагрузок, приближаясь справа и слева к этому сечению. Целесообразно за неподвижное принимать сечение в месте перелома на эпюре единичных нагрузок.

Расслоенная эпюра, в которой за неподвижное принято сечение В , представлена на рисунке. Вычислив площади составных частей расслоенной эпюры и соответствующие им ординаты единичной эпюры, получаем

Пример 14.

Определить перемещения в точках 1 и 2 балки (рис. а).

Решение.

Приведем эпюры М и Q для балки при а =2 м; q =10 кН/м; С =1,5а ; М =0,5qa 2 ; Р =0,8qa ; М 0 =М ; =200 МПа (рис. б и в ).

Определим вертикальное перемещение центра сечения, где приложен сосредоточенный момент. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 1 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. г).

Вычислим опорные реакции, составив три уравнения равновесия

Проверка

Реакции найдены верно.

Для построения эпюры рассмотрим три участка (рис. г).

1 участок

2 участок

3 участок

По этим данным строим эпюру (рис. д) со стороны растянутых волокон.

Определим по формуле Мора с помощью правила Верещагина. При этом криволинейную эпюру , на участке между опорами, можно представить в виде сложения трех эпюр. Стрелка

Знак «минус» означает, что точка 1 перемещается вверх (в направлении противоположном ).

Определим вертикальное перемещение точки 2, где приложена сосредоточенная сила. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 2 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. е).

Эпюра строится аналогично предыдущей.

Точка 2 перемещается вверх.

Определим угол поворота сечения, где приложен сосредоточенный момент.

УО «БГУИР»

кафедра инженерной графики

РЕФЕРАТ

на тему:

«ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ МЕТОДОМ МОРА. ПРАВИЛО ВЕРЕЩАГИНА»

МИНСК, 2008


Рассмотрим теперь общий метод определения перемещений, пригодный для любой, линейно деформируемой системы при любой нагрузке. Этот метод предложен выдающимся немецким ученым О. Мором.

Пусть, например, требуется определить вертикальное перемещение точки А балки, представленной на рис. 7.13, а. Заданное (грузовое) состояние обозначим буквой к. Выберем вспомогательное состояние той же балки с единичной

силой, действующей в точке A и в направлении искомого перемещения. Вспомогательное состояние обозначим буквой i(рис. 7.13,6).

Вычислим работу внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния.

Работа внешних сил будет равна произведению единичной силы на искомое перемещение ya

а работа внутренних сил по абсолютной величине равна интегралу

(1)

Формула (7.33) и есть формула Мора (интеграл Мора), которая дает возможность определить перемещение в любой точке линейно-деформируемой системы.

В этой формуле подынтегральное произведение MiMkположительно, если оба изгибающих момента имеют одинаковый знак, и отрицательно, если Miи Мк имеют разные знаки.

Если бы мы определяли угловое перемещение в точке А, то в состоянии iследовало бы приложить в точке А момент, равный единице (без размерности).

Обозначая буквой Δ любое перемещение (линейное или угловое), формулу (интеграл) Мора напишем в виде

(2)

В общем случае аналитическое выражение Miи Мк может быть различным на разных участках балки или вообще упругой системы. Поэтому вместо формулы (2) следует пользоваться более общей формулой

(3)

Если стержни системы работают не на изгиб, а на растяжение (сжатие), как, например, в фермах, то формула Мора имеет вид

(4)

В этой формуле произведение NiNKположительно, если оба усилия растягивающие или оба сжимающие. Если стержни одновременно работают и на изгиб и на растяжение (сжатие), то в обычных случаях, как показывают сравнительные расчеты, перемещения можно определять, учитывая лишь изгибающие моменты, так как влияние продольных сил весьма мало.

По тем же соображениям, как отмечалось ранее, в обычных случаях можно не учитывать влияния поперечных сил.

Вместо непосредственного вычисления интеграла Мора можно пользоваться графо-аналитическим приемом «способом перемножения эпюр», или правилом Верещагина.

Рассмотрим две эпюры изгибающих моментов, из которых одна Мк имеет произвольное очертание, а другая Мi прямолинейна (Рис 7.14, а и б).

(5)

Величина MKdzпредставляет собой элементарную площадь dωk эпюры Мк (заштрихована на рисунке). Таким образом,

(6)

следовательно,

(8)

Но представляет собой статический момент площади эпюры Мк относительно некоторой оси у, проходящей через точку О, равный ωkzc, где ωk - площадь эпюры моментов; zс - расстояние от оси у до центра тяжести эпюры Мк. Из чертежа видно, что

где Мсi - ордината эпюры Mi, расположенная под центром тяжести эпюры Мк (под точкой С). Следовательно,

(10)

т. е. искомый интеграл равен произведению площади эпюры Мк (любой по очертанию) на расположенную под ее центром тяжести ординату прямолинейной эпюры Мсi. Значение величины ωкМсi считается положительным, если обе эпюры располагаются по одну сторону стержня, и отрицательным, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента).

Необходимо помнить, что ордината Мсiберется обязательно в прямолинейной эпюре. В том частном случае, когда обе эпюры прямолинейные, можно умножить площадь любой из них на соответствующую ординату другой.

Для стержней переменного сечения правило Верещагина перемножения эпюр неприменимо, так как в этом случае уже нельзя выносить величину EJиз-под знака интеграла. В этом случае следует выразить EJкак функцию абсциссы сечения и затем уже вычислять интеграл Мора (1).

При ступенчатом изменении жесткости стержня интегрирование (или перемножение эпюр) производят для каждого участка отдельно (со своим значением EJ) и затем суммируют результаты.

В табл. 1 приведены значения площадей некоторых простейших эпюр и координат их центра тяжести.

Таблица 1

Вид эпюры Площадь эпюры Расстояние до центра тяжести

Для ускорения вычислений можно использовать готовые таблицы перемножения эпюр (табл.2).

В этой таблице, в клетках на пересечении соответствующих элементарных эпюр, приведены результаты перемножения этих эпюр.

При разбивке сложной эпюры на элементарные, представленные в табл. 1 и 7.2, следует иметь в виду, что параболические эпюры получены от действия только одной распределенной нагрузки.

В тех случаях, когда в сложной эпюре криволинейные участки получаются от одновременного действия сосредоточенных моментов, сил и равномерно распределенной нагрузки, во избежание ошибки следует сложную эпюру предварительно «расслоить», т. е. разбить ее на ряд самостоятельных эпюр: от действия сосредоточенных моментов, сил и от действия равномерно распределенной нагрузки.

Можно также применить другой прием, не требующий расслоения эпюр, а требующий лишь выделения криволинейной части эпюры по хорде, соединяющей крайние ее точки.

Покажем оба способа на конкретном примере.

Пусть, например, требуется определить вертикальное перемещение левого конца балки (рис. 7.15).

Суммарная эпюра от нагрузки представлена на рис. 7.15, а.


Таблица 7.2

Эпюра от действия единичной силы в точке А представлена на рис. 7.15, г.

Для определения вертикального перемещения в точке А необходимо перемножить эпюру от нагрузки на эпюру от единичной силы. Однако замечаем, что на участке ВС суммарной эпюры криволинейная эпюра получена не только от действия равномерно распределенной нагрузки, но также и от действия сосредоточенной силы Р. В результате на участке ВС уже будет не элементарная параболическая эпюра, приведенная в таблицах 7.1 и 7.2, а по существу сложная эпюра, для которой данные этих таблиц недействительны.

Поэтому необходимо произвести расслоение сложной эпюры по рис. 7.15, а на элементарные эпюры, представленные на рис. 7.15, б и 7.15, в.

Эпюра по рис. 7.15, б получена только от сосредоточенной силы, эпюра по рис. 7.15, в - только от действия равномерно распределенной нагрузки.

Теперь можно перемножить эпюры, используя табл. 1 или 2.

Для этого необходимо перемножить треугольную эпюру по рис. 7.15, б на треугольную эпюру по рис. 7.15, г и добавить к этому результат перемножения параболической эпюры на рис. 7.15, в на трапециевидную эпюру участка ВС по рис. 7.15, г, так как на участке АВ ординаты эпюры по рис. 7.15, в равны нулю.

Покажем теперь второй способ перемножения эпюр. Рассмотрим снова эпюру по рис. 7.15, а. Примем начало отсчета в сечении В. Покажем, что в пределах кривой LMNизгибающие моменты могут быть получены как алгебраическая сумма изгибающих моментов, соответствующих прямой LN, и изгибающих моментов параболической эпюры LNML, такой же, как и для простой балки длиной а, загруженной равномерно распределенной нагрузкой q:

Наибольшая ордината посредине будет равна .

Для доказательства напишем фактическое выражение изгибающего момента в сечении на расстоянии zот точки В

(А)

Напишем теперь выражение изгибающего момента в том же сечении, полученное как алгебраическая сумма ординат прямой LNи параболы LNML.

Уравнение прямой LN

где k- тангенс угла наклона этой прямой

Следовательно, уравнение изгибающих моментов, полученное как алгебраическая сумма уравнения прямой LNи параболы LNMNимеет вид

что совпадает с выражением (А).

При перемножении эпюр по правилу Верещагина следует перемножить трапецию BLNCна трапецию из единичной эпюры на участке ВС (см. рис. 7.15, г) и вычесть результат перемножения параболической эпюры LNML(площадью ) на ту же трапецию из единичной эпюры. Такой способ расслоения эпюр особенно выгоден, когда криволинейный участок эпюры находится на одном из средних участков балки.

Пример 7.7. Определить вертикальное и угловое перемещения консольной балки в месте приложения нагрузки (рис. 7.16).

Решение. Строим эпюру изгибающих моментов для грузового состояния (рис. 7.16, а).

Для определения вертикального перемещения выбираем вспомогательное состояние балки с единичной силой в точке приложения нагрузки.

Строим эпюру изгибающих моментов от этой силы (рис. 7.16, б). Определяем вертикальное перемещение по способу Мора

Значение изгибающего момента от нагрузки

Значение изгибающего момента от единичной силы

Подставляем эти значения МР и Miпод знак интеграла и интегрируем

Этот же результат был ранее получен другим способом.

Положительное значение прогиба показывает, что точка приложения нагрузки Р перемещается вниз (в направлении единичной силы). Если бы мы единичную силу направили снизу вверх, то имели бы Mi = 1zи в результате интегрирования получили бы прогиб со знаком минус. Знак минус показывал бы, что перемещение происходит не вверх, а вниз, как это и есть в действительности.

Вычислим теперь интеграл Мора путем перемножения эпюр по правилу Верещагина.

Так как обе эпюры прямолинейны, то безразлично, из какой эпюры брать площадь и из какой - ординату.

Площадьгрузовой эпюры равна

Центр тяжести этой эпюры расположен на расстоянии 1/3l от заделки. Определяем ординату эпюры моментов от единичной силы, расположенную под

центром тяжести грузовой эпюры. Легко убедиться, что она равна 1/3l.

Следовательно.

Тот же результат получается и по таблице интегралов. Результат перемножения эпюр положителен, так как обе эпюры располагаются снизу стержня. Следовательно, точка приложения нагрузки смещается вниз, т. е. по принятому направлению единичной силы.

Для определения углового перемещения (угла поворота) выбираем вспомогательное состояние балки, в котором на конце балки действует сосредоточенный момент, равный единице.

Строим эпюру изгибающих моментов для этого случая (рис. 7.16, в). Определяем угловое перемещение, перемножая эпюры. Площадь грузовой эпюры

Ординаты эпюры от единичного момента везде равны единице., Следовательно, искомый угол поворота сечения равен

Так как обе эпюры расположены снизу, то результат перемножения эпюр положителен. Таким образом, концевое сечение балки поворачивается по часовой стрелке (по направлению единичного момента).

Пример: Определить по способу Мора - Верещагина прогиб в точке Dдля балки, изображенной на рис. 7.17..

Решение. Строим расслоенную эпюру моментов от нагрузки, т. е. строим отдельные эпюры от действия каждой нагрузки. При этом для удобства перемножения эпюр целесообразно строить расслоенные (элементарные) эпюры относительно сечения, прогиб которого определяется в данном случае относительно сечения D.

На рис. 7.17, а представлена эпюра изгибающих моментов от реакции А (участок AD) и от нагрузки Р = 4 Т (участок DC). Эпюры строятся на сжатом волокне.

На рис. 7.17, б представлены эпюры моментов от реакции В (участок BD), от левой равномерно распределенной нагрузки (участок AD) и от равномерно распределенной нагрузки, действующей на участке ВС. Эта эпюра изображена на рис. 7.17, б на участке DCснизу.

Далее выбираем вспомогательное состояние балки, для чего в точке D, где определяется прогиб, прикладываем единичную силу (рис. 7.17, в). Эпюра моментов от единичной силы изображена на рис. 7.17, г.Теперь перемножим эпюры с 1 по 7 на эпюры 8 и 9, пользуясь таблицами перемножения эпюр, с учетом знаков.

При этом эпюры, расположенные с одной стороны балки, перемножаются со знаком плюс, а эпюры, расположенные по разные стороны балки, перемножаются со знаком минус.

При перемножении эпюры 1 и эпюры 8 получим

Перемножая эпюру 5 на эпюру 8, получим

Перемножение эпюр 2 и 9 дает

Перемножаем эпюры 4 и 9

Перемножаемэпюры 6 и 9

Суммируя результаты перемножения эпюр, получим

Знак минус показывает, что точка Dперемещается не вниз, как направлена единичная сила, а вверх.

Этот же результат был получен ранее по универсальному уравнению.

Конечно, в данном примере можно было расслоить эпюру только на участке AD, так как на участке DBсуммарная эпюра прямолинейная и ее незачем расслаивать. На участке ВС расслоения не требуется, так как от единичной силы на этом участке эпюра равна нулю. Расслоение эпюры на участке ВС необходимо для определения прогиба в точке С.

Пример. Определить вертикальное, горизонтальное и угловое перемещения сечения А ломаного стержня, представленного на рис. 7.18, а. Жесткость сечения вертикального участка стержня - EJ1 жесткость сечения горизонтального участка - EJ2.

Решение. Строим эпюру изгибающих моментов от нагрузки. Она представлена на рис. 7.18, б (см. пример 6.9). Для определения вертикального перемещения сечения А выбираем вспомогательное состояние системы, представленное на рис. 7.18, в. В точке А приложена единичная вертикальная сила, направленная вниз.

Эпюра изгибающих моментов для этого состояния представлена на рис. 7.18, в.

Определяем вертикальное перемещение по методу Мора, используя способ перемножения эпюр. Так как на вертикальном стержне во вспомогательном состоянии эпюра М1 отсутствует, то перемножаем только эпюры, относящиеся к горизонтальному стержню. Площадь эпюры берем из грузового состояния, а ординату - из вспомогательного. Вертикальное перемещение равно

Так как обе эпюры расположены снизу, то результат перемножения берем со знаком плюс. Следовательно, точка А перемещается вниз, т. е. так, как направлена единичная вертикальная сила.

Для определения горизонтального перемещения точки А выбираем вспомогательное состояние с горизонтальной единичной силой, направленной влево (рис. 7.18, г). Эпюра моментов для этого случая представлена там же.

Перемножаем эпюры МPи М2 и получаем

Результат перемножения эпюр положителен, так как перемножаемые эпюры располагаются на одной и той же стороне стержней.

Для определения углового перемещения выбираем вспомогательное состояние системы по рис. 7.18,5 и строим эпюру изгибающих моментов для этого состояния (на том же рисунке). Перемножаем эпюры МР и М3:

Результат перемножения положителен, так как перемножаемые эпюры располагаются с одной стороны.

Следовательно, сечение Aповорачивается по часовой стрелке

Те же результаты получились бы и при использовании таблиц
перемножения эпюр.

Вид деформированного стержня показан на рис. 7.18, е, при этом перемещения сильно увеличены.


ЛИТЕРАТУРА

Феодосьев В.И. Сопротивление материалов. 1986

Беляев Н.М. Сопротивление материалов. 1976

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991

Работнов Ю.Н. Механика деформируемого твердого тела. 1988

Степин П.А. Сопротивление материалов. 1990

Определение перемещений. Метод О. Мора в сочетании со способом (формулой) Симпсона

Для определения любого перемещения (линейного или углового) в методе Мора балка рассматривается в двух состояниях: действительном и вспомогательном. Вспомогательное состояние получается следующим образом: сначала всю заданную нагрузку нужно удалить, затем приложить «единичный силовой фактор» в том месте, где требуется определить перемещение , и по направлению этого искомого перемещения. Причем, когда определяем линейное перемещение (прогиб балки), то в качестве «единичного силового фактора» принимается сосредоточенная сила , а если требуется найти угол поворота , то приложить следует сосредоточенную пару.

Далее в одном и том же произвольном сечении обоих состояний (то есть и действительного, и вспомогательного) составляются аналитические выражения изгибающего момента, которые подставляются в формулу, называемую «интегралом Мора»:

где: знак Σ распространяется на все участки балки,

а EI – изгибная жесткость на участке.

Во многих случаях интегрирования по Мору можно избежать и применить способ «перемножения» эпюр . Одним из таких способов является способ Симпсона, по которому значение интеграла Мора на участке длиной вычисляется по следующей формуле:

Здесь обозначено: a , b и с – соответственно крайние и средняя ординаты эпюры изгибающих моментов действительного состояния М ,

– крайние и средняя ординаты эпюры изгибающих моментов, но только вспомогательного состояния.

Правило знаков: если обе «перемножаемые» ординаты в двух эпюрах расположены по одну сторону от оси эпюры (то есть они одного знака ), то перед их произведением мы должны поставить знак «плюс : а если они по разные стороны от оси эпюры, то перед произведением ставим знак «минус».

Следует иметь в виду, что способы «перемножения» эпюр (кроме способа Симпсона известен еще способ Верещагина ) применимы только при наличии двух условий:

  1. Изгибная жесткость балки на рассматриваемом участке должна быть постоянной (EI = Const ),
  2. Одна из двух эпюр моментов на этом участке должна быть обязательно линейной . При этом обе эпюры не должны в пределах данного участка иметь перелома.

При наличии нескольких участков на балке, удовлетворяющих указанным двум условиям, формула для определения перемещений принимает вид:

Если результат вычисления получается положительным , то, следовательно, направление искомого перемещения совпадает с направлением «единичного силового фактора» (), а если результат отрицательный, значит искомое перемещение происходит в направлении, противоположном этому фактору.

Формула Симпсона, записанная через моменты , выглядит следующим образом: перемещения (прогиб или угол поворота) равны

где li длина участка ;

EIi жесткость балки на участке;

M F значения изгибающих моментов с грузовой эпюры , соответственно участка;

значения изгибающих моментов с единичной эпюры, соответственно в начале, в середине и в конце участка.

При перемножении эпюр будет полезным для определения ординат эпюр изгибающих моментов:

, где

Задача

Определить угол поворота сечения на левой опоре φ А

1) Находим опорные реакции действительного состояния .

2) Строим эпюру моментов действительного состояния М .

3) Выбираем вспомогательное состояние для определения угла поворота φ А.

4) Находим опорные реакции вспомогательного состояния

«Реагируем» на знак «минус».

5) Строим эпюру моментов вспомогательного состояния :

6) «Перемножаем» эпюры

Поскольку одна из них (а именно) линейна на всем пролете и не имеет перелома, а эпюра М тоже без перелома, то в формуле Симпсона будет всего один участок, и тогда

Знак «плюс» говорит о том, что сечение А поворачивается в сторону «единичного момента»

prosopromat.ru

Формула Симпсона для определения перемещений

Для определения перемещения по формуле Симпсона необходимо:

  1. Построить грузовую эпюру моментов (эпюру моментов от действия всех внешних нагрузок).
  2. Построить единичную эпюру моментов. Для этого в сечении, где нужно определить линейное перемещение (прогиб) приложить единичную силу, а для определения углового перемещения - единичный момент, и от данного единичного фактора построить эпюру изгибающих моментов.
  3. Перемножить эпюры (грузовую и единичную) по формуле, которая называется формулой Симпсона:

где l i – длина участка ;

EI i – жесткость балки на участке ;

грузовой эпюры, соответственно

– значения изгибающих моментов с единичной эпюры, соответственно

Если ординаты эпюр расположены с одной стороны от оси балки, то при перемножении учитывается знак «+», если с разных, то знак «-».

prosopromat.ru

2.8 Основные варианты перемножения эпюр

Очевидно, что разнообразие приложенных
нагрузок и геометрических схем
конструкций приводит к различным, с
точки зрения геометрии, перемножаемым
эпюрам. Для реализации правила Верещагина
нужно знать площади геометрических
фигур и координаты их центров тяжести.
На рис.29 представлены некоторые основные
варианты, возникающие в практических
расчетах.

Для перемножения эпюр сложной формы
их необходимо разбивать на простейшие.
Например, для перемножения двух эпюр,
имеющих вид трапеции, нужно одну из них
разбить на треугольник и прямоугольник,
умножить площадь каждого из них на
ординату второй эпюры, расположенную
под соответствующим центром тяжести,
и результаты сложить. Аналогично
поступают и для умножения криволинейной
трапеции на любую линейную эпюру.

Если указанные выше действия проделать
в общем виде, то получим для таких
сложных случаев формулы, удобные для
использования в практических расчетах
(рис.30). Так, результат перемножения
двух трапеций (рис.30,а):

Рис. 29

По формуле (2.21) можно перемножить и
эпюры, имеющих вид “перекрученных”
трапеций (рис.30,б), но при этом произведение
ординат, расположенных по разные стороны
от осей эпюр, учитывается со знаком
минус.

Если одна из перемножаемых эпюр очерчена
по квадратной параболе (что соответствует
нагружению равномерно распределенной
нагрузкой), то для перемножения со
второй (обязательно линейной) эпюрой
ее рассматривают как сумму (рис.30,в) или
разность (рис.30,г) трапециидальной и
параболической эпюр. Результат
перемножения в обоих случаях определяется
формулой:

но значение f при этом определяется
по-разному (рис. 30, в, г).

Рис. 30

Возможны случаи, когда ни одна из
перемножаемых эпюр не является
прямолинейной, но хотя бы одна из них
ограничена ломаными прямыми линиями.
Для перемножения таких эпюр их
предварительно разбивают на участки,
в пределах каждого из которых по крайней
мере одна эпюра являетя прямолинейной.

Рассмотрим использование правила
Верещагина на конкретных примерах.

Пример 15. Определить прогиб в
середине пролета и угол поворота левого
опорного сечения балки, нагруженной
равномерно распределенной нагрузкой
(рис.31,а), способом Верещагина.

Последовательность расчета способом
Верещагина – такая же, как и в методе
Мора, поэтому рассмотрим три состояния
балки: грузовое – при действии
распределенной нагрузки q; ему
соответствует эпюра M q (рис.31,б),
и два единичных состояния – при действии
силы
приложенной в точке С (эпюра
,
рис.31,в), и момента
,
приложенного в точке В (эпюра
,
рис.31,г).

Прогиб балки в середине пролета:

Аналогичный результат был получен
ранее методом Мора (см. пример 13). Следует
обратить внимание на тот факт, что
перемножение эпюр выполнялось для
половины балки, а затем, в силу симметрии,
результат удваивался. Если же площадь
всей эпюры M q умножить на
расположенную под ее центром тяжести
ординату эпюры
(
на
рис.31,в), то величина перемещения будет
совершенно иной и неправильной так как
эпюра
ограничена ломаной линией. На
недопустимость такого подхода уже
указывалось выше.

А при вычислении угла поворота сечения
в точке В можно площадь эпюры M q умножить на расположенную под ее центром
тяжести ординату эпюры
(
,
рис.31,г), так как эпюра
ограничена прямой линией:

Этот результат также совпадает с
результатом, полученным ранее методом
Мора (см. пример 13).

Рис. 31

Пример 16. Определить горизонтальное
и вертикальное перемещения точки А в
раме (рис.32,а).

Как и в предыдущем примере, для решения
задачи необходимо рассмотреть три
состояния рамы: грузовое и два единичных.
Эпюра моментов M F , соответствующая
первому состоянию, представлена на
рис.32,б. Для вычисления горизонтального
перемещения прикладываем в точке А по
направлению искомого перемещения (т.е.
горизонтально) силу
,
а для вычисления вертикального
перемещения силу
прикладываем вертикально (рис.32,в,д).
Соответствующие эпюры
и
показаны на рис.32,г,е.

Горизонтальное перемещение точки А:

При вычислении

на участке АВ трапеция (эпюра M F)
разбита на треугольник и прямоугольник,
после чего треугольник с эпюры
“умножен”
на каждую из этих фигур. На участке ВС
криволинейная трапеция разделена на
криволинейный треугольник и прямоугольник,
а для перемножения эпюр на участке СД
использована формула (2.21).

Знак ” – “, полученный при вычислении

,
означает, что точка А перемещается по
горизонтали не влево (в этом направлении
приложена сила
),
а вправо.

Здесь знак ” – ” означает, что точка
А перемещается вниз, а не вверх.

Отметим, что единичные эпюры моментов,
построенные от силы

,
имеют размерность длины, а единичные
эпюры моментов построенные от момента
,
являются безразмерными.

Пример 17. Определить вертикальное
перемещение точки А плоско-пространственной
системы (рис.33,а).

Рис.23

Как известно (см. гл.1), в поперечных
сечениях стержней плоско-пространственной
системы возникают три внутренних
силовых фактора: поперечная сила Q y ,
изгибающий момент M x и крутящий
момент M кр. Так как влияние
поперечной силы на величину перемещения
незначительно (см. пример 14,
рис.27), то при вычислении перемещения
методом Мора и Верещагина из шести
слагаемых остаются только два.

Для решения задачи построим эпюры
изгибающих моментов M x,q и крутящих
моментов М кр,q от внешней нагрузки
(рис.33,б), а затем в точке А приложим силу
по направлению искомого перемещения,
т.е. вертикального (рис.33,в), и построим
единичные эпюры изгибающих моментов
и крутящих моментов
(рис.33,г).
Стрелками на эпюрах крутящих моментов
показаны направления закручивания
соответствующих участков
плоско-пространственной системы.

Вертикальное перемещение точки А:

При перемножении эпюр крутящих моментов
произведение берется со знаком “+”,
если стрелки, указывающие направление
кручения, сонаправленны, и со знаком ”
– ” – в противном случае.

studfiles.net

Перемножение эпюр способом Верещагина

Для вы­числения необходимо провести сле­дующие операции:

1. Построить эпюры изгибающих моментов Мр и Мк соответственно от заданного и единичного нагружений балки. При сложном нагружении балки (фиг. 19, а) следует: либо эпюру Мр разбить на простейшие части, для которых величина площади и по­ложение центра тяжести известны (фиг. 19, б), либо (предпочтительно) построить эпюру Мр в расслоенном виде (фиг. 19, в).

Если балка ступенчато переменного сечения, эпюра Мр должна быть, кроме того, разбита на участки, в пре­делах которых жесткость сечения по­стоянна.

2. На каждом участке помножить площадь ω одной из эпюр (например, эпюры Мр) на ординату Мс другой эпюры (например, эпюры Мк) под центром тяжести первой эпюры и по­лученное произведение разделить на коэффициент ступенчатости j.

При этом ордината Мс должна быть взята на эпюре, которая на рассматриваемом участке меняется по линейному закону (без излома). Если же эпюра является лома­ной, ее следует разбить на участки, в пределах которых она окажется линейной.

3. Вычислить сумму слагаемых, ука­занных в п. 2.

Формула для определения переме­щения по рассматриваемому способу

где суммирование производят по всем участкам балки

Площади и координаты центров тя­жести некоторых эпюр даны в табл. 11. Результаты перемножения часто встре­чающихся грузовых и единичных эпюр приведены в табл. 12.

Пример. Определить угол поворота се­ чения В ступенчатой балки (см.фиг. 19, а).

Определив опорные реакций Аи В, построим эпюру Мр на фиг. 19, б и в изо­бражены нерасслоенная и расслоенная эпю­ры Мр. Приложив к точке В освобожденной от нагрузки балки единичный момент, по­строим единичную эпюру М1 (фиг, 19. г).

Используя расслоенную эпюру Мр,по формуле 36 и табл. 12 определяем искомый угол поворота сечения В:


Фиг. 20

Пример. Определить прогиб в точке К балки постоянного поперечного сечения (фиг. 20, а).

Приложив к точке К,освобожденной от заданной нагрузки балки, единичную силу, построим единичную эпюру изгибающих мо­ментов Мк (фиг. 20, б).
Определив опорные реакции от заданной нагрузки

отрежем консоль и заменим ее силой qa и моментом (фиг. 20, в).

Построим, эпюру М расслоенной (от каждого вида нагрузки в отдельности), под­ходя к месту излома единичной эпюры Мк с двух сторон (фиг. 20, i ).

По формуле (36) с использованием табл. 12 определяем искомое перемещение

Заказать решение Способ оплаты

funnystudy.ru

Определение перемещений в балке по формуле Симпсона

Для балки определить линейные и угловые перемещения в точках A, B, C, предварительно подобрав сечение двутавра из условия прочности.

Дано: a =2 м, b =4 м, с=3 м, F =20 кН, М=18 кН м, q =6 кН/м, σ adm =160 МПа, Е=2 10 5 МПа



1) Вычерчиваем схему балки, определяем опорные реакции. В жёсткой заделке возникает 3 реакции - вертикальная и горизонтальная , а так же опорный момент. Поскольку горизонтальных нагрузок нет – соответствующая реакция равна нулю. Для того, чтобы найти реакции в точке E, составим уравнения равновесия.

∑F y = 0 q7-F+R E =0

R E =-q7+F=-67+20=-22кН (знак говорит о том, что

Найдем опорный момент в жесткой заделке , для чего решим уравнение моментов относительно любой выбранной точки.

∑M C: -M E -R E 9-F6-q77/2-M=0

M E =-18-229+649/2=-18-198+147=-69кНм (знак говорит о том, что реакция направлена в обратную сторону, показываем это на схеме)

2) Строим грузовую эпюру M F – эпюру моментов от заданной нагрузки.

Для построения эпюр моментов найдем моменты в характерных точках . В точке В определяем моменты как от правых, так и от левых сил , поскольку в этой точке приложен момент.

Для построения эпюры момента на линии действия распределенной нагрузки (участки АВ и ВС ) нам нужны дополнительные точки для построения кривой. Определим моменты в серединах этих участков. Это моменты в серединах участков АВ и ВС 15,34 кНм и 23,25кНм . Строим грузовую эпюру.

3) Для определения линейных и угловых перемещений в точке необходимо приложить в этой точке, в первом случае, единичную силу (F=1) и построить эпюру моментов, во втором случае, единичный момент (M=1 ) и построить эпюру моментов. Строим эпюры от единичных нагрузок для каждой точки – А, В и С.

4) Для нахождения перемещений мы используем формулу Симпсона.

где l i – длина участка;

EI i – жесткость балки на участке;

M F – значения изгибающих моментов с грузовой эпюры , соответственно в начале, в середине и в конце участка;

значения изгибающих моментов с единичной эпюры , соответственно в начале, в середине и в конце участка.

Если ординаты эпюр расположены с одной стороны от оси балки, то при перемножении учитывается знак «+», если с разных, то знак «-».

Если результат получился со знаком «-», значит искомое перемещение по направлению не совпадает с направлением соответствующего единичного силового фактора.

Рассмотрим применение формулы Симпсона на примере определения перемещений в точке А.

Определим прогиб, перемножив грузовую эпюру на эпюру от единичной силы.

Прогиб получился со знаком «-», значит искомое перемещение по направлению не совпадает с направлением единичной силы (направлено вверх).

Определим угол поворота , перемножив грузовую эпюру на эпюру от единичного момента.

Угол поворота получился со знаком «-», значит искомое перемещение по направлению не совпадает с направлением соответствующего единичного момента (направлен против часовой стрелки).

5) Для определения конкретных значений перемещений требуется подобрать сечение. Подберем сечение двутавра

где M max – это максимальный момент на грузовой эпюре моментов

Подбираем по сортаменту двутавр №30 с W x =472см 3 и I x = 7080см 4

6) Определяем перемещения в точках, раскрывая жесткость сечения: E – модуль продольной упругости материала или модуль Юнга (2 10 5 МПа), J x – осевой момент инерции сечения

Прогиб в точке А (вверх)

Угол поворота (против часовой стрелки)

Если требуется построить изогнутую ось балки , то балка вычерчивается без нагрузки, и в точках откладываются прогибы в соответствующие стороны - строится плавная кривая – изогнутая ось балки.

prosopromat.ru

Перемножение эпюр по правилу, методу или способу Мора-Верещагина

Привет! В этой статье будем учиться определять перемещения поперечных сечений при изгибе: прогибы и углы поворотов, по методу (способу, правилу) Верещагина. Причем, это правило широко используется не только при определении перемещений, но и при раскрытии статической неопределимости систем по методу сил. Я расскажу, о сути этого метода, как перемножаются эпюры различной сложности и когда выгодно пользоваться этим методом.

Что нужно знать для успешного освоения материалов данного урока?

Обязательно нужно знать, как строится эпюра изгибающих моментов, т.к. в этой статье будем работать с данной эпюрой.

Верещагин и его метод, правило или способ

А.К. Верещагин в 1925г. предложил более простой способ решения (формулы) интеграла Мора. Он предложил вместо интегрирования двух функций перемножать эпюры: умножать площадь одной эпюры на ординату второй эпюры под центром тяжести первой. Этим способом можно пользоваться, когда одна из эпюр прямолинейна, вторая может быть любой. Кроме того, ордината берется прямолинейной эпюры. Когда эпюры обе прямолинейны, то тут совсем не важно, чью брать площадь, а чью ординату. Таким образом, эпюры по Верещагину перемножаются по следующей формуле:​

\({ V={ M }_{ F } }\cdot \overline { M } ={ \omega }_{ C }\cdot { \overline { M } }_{ C } \)​

Проиллюстрировано перемножение эпюр по Верещагину: C - центр тяжести первой эпюры, ωс - площадь первой эпюры, Mc - ордината второй эпюры под центром тяжести первой.

Площадь и центр тяжести эпюр

При использовании метода Верещагина, берется не сразу вся площадь эпюры, а частями, в пределах участков. Эпюра изгибающих моментов расслаивается на простейшие фигуры.

Любую эпюру можно расслоить всего на три фигуры: прямоугольник, прямоугольный треугольник и параболический сегмент.

Перемножение эпюр по Верещагину

В этом блоке статьи покажу частные случаи перемножения эпюр по Верещагину.

Прямоугольник на прямоугольник

​\({ V={ M }_{ F } }\cdot \overline { M } ={ b\cdot h\cdot c } \)​

Прямоугольник на треугольник

​\({ V={ M }_{ F } }\cdot \overline { M } ={ b\cdot h\cdot \frac { 1 }{ 2 } \cdot c } \)​

Треугольник на прямоугольник

​\({ V={ M }_{ F } }\cdot \overline { M } ={ \frac { 1 }{ 2 } \cdot b\cdot h\cdot c } \)​

Сегмент на прямоугольник

​\({ V={ M }_{ F } }\cdot \overline { M } ={ \frac { q\cdot { l }^{ 3 } }{ 12 } \cdot c } \)​

Сегмент на треугольник

​\({ V={ M }_{ F } }\cdot \overline { M } ={ \frac { q\cdot { l }^{ 3 } }{ 12 } \cdot \frac { 1 }{ 2 } \cdot c } \)​

Частные случаи расслоения эпюр на простые фигуры

В этом блоке статьи покажу частные случаи расслоения эпюр на простые фигуры, для возможности их перемножения по Верещагину.

Прямоугольник и треугольник

Два треугольника

Два треугольника и сегмент

Треугольник, прямоугольник и сегмент

Пример определения перемещений: прогибов и углов поворотов по Верещагину

Теперь предлагаю рассмотреть конкретный пример с расчетом перемещений поперечных сечений: их прогибов и углов поворотов. Возьмем стальную балку, которая загружена всевозможными типами нагрузок и определим прогиб сечения C, а также угол поворота сечения A.

Построение эпюры изгибающих моментов

В первую очередь, рассчитываем и строим эпюру изгибающих моментов:

Построение единичных эпюр моментов

Теперь для каждого искомого перемещений необходимо приложить единичную нагрузку (безразмерную величину равную единице) и построить единичные эпюры:

  • Для прогибов, прикладываются единичные силы.
  • Для углов поворотов, прикладываются единичные моменты.

Причем направление этих нагрузок не важно! Расчет покажет верное направление перемещений.

Например, после расчета величина прогиба получилась положительной, это значит, что направление перемещения сечения совпадает с направлением ранее прикладываемой силы. Тоже самое касается и углов поворотов.

Перемножение участков эпюры по Верещагину

После проведения всех подготовительных работ: построения эпюры изгибающих моментов, расслоения ее на элементарные фигуры и построения единичных эпюр от нагрузок, приложенных в местах и направлении искомых перемещений, можно переходить непосредственно к перемножению соответствующих эпюр.

Как уже было написано выше, линейные эпюры можно перемножать в любом порядке, то есть брать площадь любой эпюры: основной или единичной, и умножать на ординату другой. Но обычно, чтобы не путаться в расчетах, площади берут основной эпюры изгибающих моментов , в этом уроке будем придерживаться этого же правила.

Определение прогиба сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем прогиб сечения C по методу Мора - Верещагина:

\[ { V }_{ C }=\frac { 1 }{ E{ I }_{ x } } (\frac { 1 }{ 2 } \cdot 6\cdot 3\cdot \frac { 2 }{ 3 } \cdot 2+\frac { 1 }{ 2 } \cdot 6\cdot 2\cdot \frac { 2 }{ 3 } \cdot 2)=\frac { 20кН{ м }^{ 3 } }{ E{ I }_{ x } } \]

Представим, что рассчитываемая балки имеет поперечное сечение в виде двутавра №24 по ГОСТ 8239-89, тогда прогиб балки будет равен:

\[ { V }_{ C }=\frac { 20кН{ м }^{ 3 } }{ E{ I }_{ x } } =\frac { 20\cdot { 10 }^{ 9 }Н\cdot { см }^{ 3 } }{ 2\cdot { 10 }^{ 7 }\frac { Н }{ { см }^{ 2 } } \cdot 3460{ см }^{ 4 } } =0.289см \]

Определение угла поворота сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем угол поворота сечения C по правилу Мора - Верещагина:

\[ { \theta }_{ C }=\frac { 1 }{ E{ I }_{ x } } (-\frac { 1 }{ 2 } \cdot 6\cdot 3\cdot \frac { 1 }{ 3 } \cdot 1)=-\frac { 3кН{ м }^{ 2 } }{ E{ I }_{ x } } \]

\[ { { \theta } }_{ C }=-\frac { 3кН{ м }^{ 2 } }{ E{ I }_{ x } } =-\frac { 3\cdot { 10 }^{ 7 }Н\cdot { см }^{ 3 } }{ 2\cdot { 10 }^{ 7 }\frac { Н }{ { см }^{ 2 } } \cdot 3460{ см }^{ 4 } } =-0.0004рад \]

sopromats.ru

Формулы трапеций и Симпсона

Воспользуемся
правилом Верещагина для перемножения
двух прямолинейных эпюр, имеющих вид
трапеций. Разобьем обе трапеции на
треугольники, у которых площади и
положения центров тяжести легко
определяются.

Эпюра
M F

ω 1

C 1 C 2

ω 2

Эпюра

Мы
получили формулу
трапеций,

согласно
которой произведения соответствующих
левых и правых ординат эпюр необходимо
удвоить, а произведения перекрестных
ординат взять одинарными, и полученную
сумму умножить на одну шестую длины
эпюр.

Рассмотрим
случай, когда грузовая эпюра представлена
квадратной параболой, а единичная эпюра
– трапецией.

ω П.С.

Наряду
с крайними ординатами укажем и средние.

Разобьем
криволинейную эпюру на трапецию и
параболический сегмент.

Произведем
перемножение соответствующих фигур.

Выражение
I Т
у нас имеется. Найдем
.

Площадь
параболического сегмента:

Ордината
единичной эпюры под центром тяжести
параболического сегмента:

После
подстановки получаем формулу
Симпсона:

Произведение
двух эпюр равно сумме произведений
крайних ординат и учетверенному
произведению средних ординат, умноженной
на одну шестую длины эпюр.

§7. Силовой расчет статически неопределимых стержневых систем (снс).

Статически
неопределимые системы (СНС) имеют
преимущества и недостатки по сравнению
со статически определимыми системами
(СОС).

Достоинства:

    СНС
    обладают большей живучестью при
    эксплуатации под нагрузкой, чем СОС. В
    СОС все элементы практически
    равнонапряжены, и поэтому они имеют
    резервы прочности только в пределах
    коэффициента запаса k
    =1,5
    – 2. Если хотя бы один элемент перейдет
    в предельное состояние, вся конструкция
    получит недопустимые с точки зрения
    норм расчета деформации или разрушится.
    СНС – это неравнонапряженная конструкция
    и при переходе наиболее напряженного
    элемента в предельное состояние,
    происходит перераспределение усилий
    от возросшей нагрузки на менее напряженные
    элементы.

    СНС,
    в силу наличия лишних связей и избыточной
    жесткости отдельных элементов, менее
    деформативны, чем СОС, т.е. в них меньше
    линейные угловые перемещения.

Недостатки:

    СНС
    более сложны в расчете, чем СОС, что
    объясняется наличием избыточных
    (лишних) связей. Трудоемкость расчета
    СНС пропорциональна третьей степени
    количества лишних связей, т.е.
    .
    Например, если для двух системn 1 =1,
    n 2 =4 ,
    то
    t 1 = α ,
    t 2 =64α ,
    т.е. время расчета возрастает в 64 раза.

    В
    СНС распределение усилий в элементах
    зависит от их геометрических размеров,
    определение которых, в свою очередь,
    является основной задачей сопротивления
    материалов. Таким образом, возникает
    необходимость априорного назначения
    изгибных жесткостей и поперечных
    сечений отдельных стержней: (EY ) k k (EY ),
    что приводит к неоднозначности
    конструктивных решений.

Более
удачные назначения жесткостей, зависящие
от понимания сущности задач сопротивления
материалов, приведет к созданию более
оптимальных конструкций.

    В
    СНС возможно появление трудно
    предсказуемого по величине
    напряженно-деформированного состояния,
    вызванного температурными изменениями
    и независимой осадкой опор. Изменение
    температуры одного из элементов вызывает
    появление температурных напряжений
    во всех стержнях СНС. Равно как неточность
    изготовления одного из стержней или
    смещение одной связи вызывает появление
    монтажных напряжений во всех стержнях.
    В СОС таких напряжений не возникает.

Рассмотрим
основные методы расчета СНС при
статическом воздействии нагрузок.