Импульсный блок питания на твс. ИИП для новичков на IR2153 - Блоки питания (импульсные) - Источники питания. Видео о данном импульсном блоке питания

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.

Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.


На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры - структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)

Схема ИБП на биполярных транзисторах


Схема ИБП на полевых транзисторах

Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.


Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, - 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей - выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, - вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Константин (riswel)

Россия, г. Калининград

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Тип блока питания, как уже заметили — импульсный. Такое решение резким образом уменьшает вес и размеры конструкции, но работает не хуже обыкновенного сетевого трансформатора, к которому мы привыкли. Схема собрана на мощном драйвере IR2153. Если микросхема в DIP корпусе, то диод нужно ставить обязательно. На счет диода — обратите внимание, он не обычный, а ультрабыстрый, поскольку рабочая частота генератора составляет десятки килогерц и обычные выпрямительные диоды тут не подойдут.


В моем случае вся схема была собрана на «рассыпухе», поскольку собирал только для проверки работоспособности. Мной схема практически не настраивалась и сразу заработала как швейцарские часы.

Трансформатор — желательно взять готовый, от компьютерного блока питания (подойдет буквально любой, я взял трансформатор с косичкой от блока питания АТХ 350 ватт). На выходе трансформатора можно использовать выпрямитель из диодов ШОТТКИ (тоже можно найти в компьютерных блоках питания), или любые быстрые и ультрабыстрые диоды с током 10 Ампер и более, также можно ставить наши КД213А.






Схему подключайте в сеть через лампу накаливания 220 Вольт 100 ватт, в моем случае все тесты делал инвертором 12-220 с защитой от КЗ и перегруза и только после точной настройки решился подключить в сеть 220 Вольт.

Как должна работать собранная схема?

  • Ключи холодные, без выходной нагрузки (у меня даже с выходной нагрузкой 50 ватт ключи оставались ледяными) .
  • Микросхема не должна перегреваться в ходе работы.
  • На каждом конденсаторе должно быть напряжение порядка 150 Вольт, хотя номинал этого напряжение может откланяться на 10-15 Вольт.
  • Схема должна работать бесшумно.
  • Резистор питания микросхемы (47к) должен чуть перегреваться во время работы, возможен также ничтожный перегрев резистора снаббера (100 Ом).

Основные проблемы, которые возникают после сборки

Проблема 1. Собрали схему, при подключении контрольная лампочка, которая подключена на выход трансформатора мигает, а сама схема издает непонятные звуки.

Решение. Скорее всего не хватает напряжения для питания микросхемы, попробуйте снизить сопротивление резистора 47к до 45, если не поможет, то до 40 и так (с шагом 2-3кОм) до тех пор, пока схема не заработает нормально.

Проблема 2. Собрали схему, при подаче питания ничего не греется и не взрывается, но напряжение и ток на выходе трансформатора мизерные (почти ровны нулю)

Решение. Замените конденсатор 400Вольт 1мкФ на дроссель 2мГн.

Проблема 3. Один из электролитов сильно греется.

Решение. Скорее всего он нерабочий, замените на новый и заодно проверьте диодный выпрямитель, может именно из-за нерабочего выпрямителя на конденсатор поступает переменка.

Импульсный блок питания на ir2153 можно использовать для питания мощных, высококачественных усилителей, или же использовать в качестве зарядного устройства для мощных свинцовых аккумуляторов, можно и в качестве блока питания — все на ваше усмотрение.

Мощность блока может доходить до 400 ватт , для этого нужно будет использовать трансформатор от АТХ на 450 ватт и заменить электролитические конденсаторы на 470мкФ — и все!

В целом, импульсный блок питания своими руками можно собрать всего за 10-12 $ и то если брать все компоненты из радиомагазина, но у каждого радиолюбителя найдется больше половины радиодеталей, использованных в схеме.

Принцип реализации вторичной мощности за счёт применения дополнительных устройств, обеспечивающих энергией схемы, уже достаточно давно используется в большей части электроприборов. Этими устройствами являются блоки питания . Они служат для преобразования напряжения до необходимого уровня. БП могут быть как встроенными, так и отдельными элементами. Принципов преобразования электроэнергии существует два. Первый основан на применении аналоговых трансформаторов, а второй основан на использовании импульсных блоков питания. Разница между этими принципами довольно большая, но, к сожалению, не все её понимают. В этой статье разберёмся, как работает импульсный блок питания и чем же он так отличается от аналогового. Давайте же начнём. Поехали!

Первыми появились именно трансформаторные БП. Их принцип работы заключается в том, что они меняют структуру напряжения с помощью силового трансформатора, который подключён к сети 220 В. Там снижается амплитуда синусоидальной гармоники, которая направляется дальше к выпрямительному устройству. Затем происходит сглаживание напряжения параллельно подключенной ёмкостью, которая подбирается по допустимой мощности. Регулирование напряжения на выходных клеммах обеспечивается благодаря смене положения подстроечных резисторов.

Теперь перейдём к импульсным БП. Они появились несколько позже, однако, сразу завоевали немалую популярность за счёт ряда положительных особенностей, а именно:

  • Доступности комплектования;
  • Надёжности;
  • Возможности расширить рабочий диапазон для выходных напряжений.

Все устройства, в которых заложен принцип импульсного питания, практически ничем не отличаются друг от друга.

Элементами импульсного БП являются:

  • Линейный источник питания;
  • Источник питания Standby;
  • Генератор (ЗПИ, управление);
  • Ключевой транзистор;
  • Оптопара;
  • Цепи управления.

Чтобы подобрать блок питания с конкретным набором параметров, воспользуйтесь сайтом ChipHunt.

Давайте, наконец, разберёмся, как работает импульсный блок питания. В нём применяются принципы взаимодействия элементов инверторной схемы и именно благодаря этому достигается стабилизированное напряжение.

Сперва на выпрямитель поступает обычное напряжение 220 В, далее происходит сглаживание амплитуды при помощи конденсаторов ёмкостного фильтра. После этого выполняется выпрямление проходящих синусоид выходным диодным мостом. Затем происходит преобразование синусоид в импульсы высоких частот. Преобразование может выполняться либо с гальваническим отделением сети питания от выходных цепей, либо без выполнения такой развязки.

Если БП с гальванической развязкой, то сигналы высокой частоты направляются на трансформатор, который и осуществляет гальваническую развязку. Для увеличения эффективности трансформатора повышается частота.

Работа импульсного БП основана на взаимодействии трёх цепочек:

  • ШИМ-контроллера (управляет преобразованием широтно-импульсной модуляции);
  • Каскада силовых ключей (состоит из транзисторов, которые включаются по одной из трёх схем: мостовой, полумостовой, со средней точкой);
  • Импульсного трансформатора (имеет первичную и вторичную обмотки, которые монтируются вокруг магнитопровода).

Если же блок питания без развязки, то ВСЧ разделительный трансформатор не используется, при этом сигнал подаётся сразу на фильтр низких частот.

Сравнивая импульсные блоки питания с аналоговыми, можно увидеть очевидные преимущества первых. ИБП имеют меньший вес, при этом их КПД значительно выше. Они имеют более широкий диапазон питающих напряжений и встроенную защиту. Стоимость таких БП, как правило, ниже.

Из недостатков можно выделить наличие высокочастотных помех и ограничений по мощности (как при высоких, так и при низких нагрузках).

Проверить ИБП можно при помощи обычной лампы накаливания. Обратите внимание, что не следует подключать лампу в разрыв удалённого транзистора, поскольку первичная обмотка не рассчитана на то, чтобы пропускать постоянный ток, поэтому ни в коем случае нельзя допускать его пропускания.

Если лампа светится, значит, БП работает нормально, если же не светится, то блок питания не работает. Короткая вспышка говорит о том, что ИБП блокируется сразу после запуска. Очень яркое свечение свидетельствует об отсутствии стабилизации выходного напряжения.

Теперь вы будете знать на чём основан принцип работы импульсного и обычного аналогового блоков питания. Каждый из них имеет свои особенности строения и работы, которые следует понимать. Также вы сможете проверить работоспособность ИБП при помощи обычной лампы накаливания. Пишите в комментариях была полезной для вас эта статья и задавайте любые интересующие вопросы по рассмотренной теме.

Рассказать в:
Многие начинающие знакомство с импульсниками, начинают собирать то, что по проще.
В том числе и с этой схемы:

Я также начинал с нее.

Вполне рабочая схема, но если ее немного доукомплектовать, то получится достойный импульсный БП для начинающих и не только.
Вот как то так:

Большинство деталей выпаивал из старых компьютерных БП и старых мониторов. В общем собирал из того что нормальные люди выбрасывают на свалку.
Вот так выглядит ИИП в сборе:

А вот уже БП с нагрузкой. 4 лампы по 24 вольта. По две штуки в каждое плечо.

Замерял общее напряжение и ток в одном плече. За пол часа работы с нагрузкой, радиатор нагрелся около 50*.
В общем получился блок потания на 400Ватт. Вполне можно запитать 2 канала усилителя по 200Ватт.

Основную проблему для начинающих создает намотка трансформатора.
Трансформатор можно намотать на кольцах, или выдернуть транс из компового БП.
Я взял транс из старого монитора, а так как в мониторах транс с зазором, я взял сразу два.

Эти трансы кидаю в банку, заливаю ацетоном, закрываю крышкой и курю.

На следующий день открыл банку, один транс сам развалился, второй немного пришлось расшевелить руками.

Так как с двух трансов получится один, я размотал одну катушку. Ничего не выбрасываю, все пригодится для намотки нового транса.
Можно конечно спилить феррит, чтобы убрать зазор. Но у меня старых мониторов как грязи и с стачиванием зазора не заморачиваюсь.
Сразу же переставил ноги, распиновка как и в комповом трансе, а лишние выбросил.

Потом в программе Старичка рассчитываю под нужное мне напряжение и ток.
Подгоняю расчеты под провод который есть в наличии.
Длинна катушки 26,5мм. У меня есть провод 0,69. Считаю 0,69х2(двойным проводом)х38 витков / делю на 2 (слоя) =26,22мм.
Получается 2 провода 0,69 лягут ровно в два слоя.

Теперь готовлю медную ленту для намотки вторички. Лентой легко мотать, провода не путаются, не распадаются и ложатся виток к витку.
Мотаю сразу четырьмя проводами 0,8мм, 4 полу обмотки.
В рейку забил 2 гвоздя, натянул 4 провода, промазал клеем.

Пока лента сохнет мотаю первичку. Пробовал мотать два одинаковых транса, в одном первичку мотал целиком, в другом мотал половину первочки, потом вторичку и в конце вторую половину первички(так как намотаны комповские трансы). Так вот разницы в работе обеих трансов не заметил никакой. Больше не заморачиваюсь и мотаю первичку целой.
В общем мотаю: намотал один слой первички, так как нету третьей руки чтобы поддерживать, обматываю узким скотчем в один слой. При нагреве транса скотч расплавится, и если где-то был послаблен виток, скотч склеит как клеем. Теперь наматываю пленочную ленту, ту что с разобранного транса. и доматываю первичку.

За изолировал первичку, положил экран(медная фольга) только чтобы небыло полного витка, не должна сходится на 3-5мм.
Экран забыл сфоткать.
Лента высохла, и таким макаром мотаю вторичку.

Намотал слой вторички, выровнял ряд узкими полосками с разобранного транса, за изолировал, домотал вторичку, за изолировал

Воткнул ферриты, стянул их узким скотчем(около 10 слоев), с баллончика залил лаком сверху и снизу, чтобы транс не цикал и под тепло вентилятор. Пусть сохнет.
В итоге готовый трансформатор:

На намотку транса потратил минут 30. И около часа на подготовку и зачистку с залуживанием проводов.АРХИВ:Скачать Раздел.

В радиолюбительской практике многие самодельные конструкции остаются на полках без внимания по той причине, что не имеют блока питания. Одна из самых повторяемых конструкций - усилитель мощности низкой частоты, которому тоже нужен источник питания. Сетевые трансформаторы для запитки мощных усилителей стоят немало денег, да и размеры и вес иногда некстати. По этому в последнее время широкое применение нашли импульсные блоки питания. Эти блоки имеют полностью электронную начинку и работают в импульсном режиме. За счет повышенной рабочей частоте удается резким образом уменьшить размеры и вес источника питания. Схема такого блока питания была найдена в одном из зарубежных сайтов, недолго думая, решил повторить конструкцию.


Конструкция отличается особой простотой и дешевизной, в моем случае было потрачено всего 5$ на транзисторы и микросхему, все остальное можно найти в нерабочем компьютерном блоке питания.
Мощность такого блока может доходить до 400 ватт, для этого нужно только поменять диодный выпрямитель и электролиты, вместо 220 мкФ, поставить на 470.

Выпрямитель можно взять готовый, от компьютерного БП или собрать мост из диодов с током 3 А и более, обратное напряжение диодов не менее 400Вольт.


Первый запуск схемы нужно проводить с последовательно подключенной лампой накаливания на 220 Вольт 100 - 150 ватт, чтобы при неправильном монтаже схема не взорвалась.